-16 CC 9-6 Content Standards Dilations Objective G.SRT.1a A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. Also G.SRT.1b, G.CO.2, G.SRT.2 To understand dilation images of figures The pupil is the opening in the iris that lets light into the eye. Depending on the amount of light available, the size of the pupil changes. Do you think you can model this using rigid motions? MATHEMATICAL PRACTICES Normal Light Dim Light Iris Pupil 12 mm 12 mm Diameter of pupil = 2 mm Diameter of pupil = 8 mm Observe the size and shape of the iris in normal light and in dim light. What characteristics stay the same and what characteristics change? How do these observations compare to transformation of figures you have learned about earlier in the chapter? Lesson Vocabulary tdilation tdilation tcenter of dilation tscale factor of a dilation tenlargement treduction *OUIF4PMWF*UZPVMPPLFEBUIPXUIFQVQJMPGBOFZFDIBOHFTJOTJ[FPSdilates. In this MFTTPOZPVXJMMMFBSOIPXUPEJMBUFHFPNFUSJDêHVSFT Essential Understanding :PVDBOVTFBTDBMFGBDUPSUPNBLFBMBSHFSPSTNBMMFS DPQZPGBêHVSFUIBUJTBMTPTJNJMBSUPUIFPSJHJOBMêHVSF Key Concept Dilation P A dilation with center of dilation C and scale factor n, n 0, can be written as D(n, C). A dilation is a transformation with the following properties. P r ǔFJNBHFPGC is itself (that is, CR C). Q r 'PSBOZPUIFSQPJOUR, RR is on CR and CRR n CR, or n CRR CR . R R CC r %JMBUJPOTQSFTFSWFBOHMFNFBTVSF 8 Q CRn CR Lesson 9-6 CC-16 GEOM12_SE_CCS_C09L06.indd 587 HSM12GESE_CC16.indd 1 Dilations Dilations hsm11gmse_0905_t09541.ai 587 1 7/5/11 2:36:42 PM 8/1/11 1:26:55 PM ǔFTDBMFGBDUPSn of a dilation is the ratio of a length of the image to the corresponding MFOHUIJOUIFQSFJNBHFXJUIUIFJNBHFMFOHUIBMXBZTJOUIFOVNFSBUPS'PSUIFêHVSF CRR RRPR PRQR QRRR shown on page 587, n CR RP PQ QR . A dilation is an enlargement if the scale factor nJTHSFBUFSUIBOǔFEJMBUJPOJTB reduction if the scale factor n is between 0 and 1. B B C D D E Enlargement center A, scale factor 2 Problem 1 G F C E 4 2 A A F C 2 G H Reduction center C, scale factor 1 4 Finding a Scale Factor hsm11gmse_0905_t08140.ai Multiple Choice Is D(n, X)(GXTR) GXRTRRR an enlargement or a reduction? What is the scale factor n of the dilation? enlargement; n 2 Why is the scale 4 1 12 , or 3 ? factor not The scale factor of a dilation always has the image length (or the distance between a point on the image and the center of dilation) in the numerator. H 8 enlargement; n 3 reduction; n 13 reduction; n 3 T R 8 R T X X ǔF ǔFJNBHFJTMBSHFSUIBOUIFQSFJNBHFTPUIFEJMBUJPOJTBO enlargement. Use the ratio of the lengths of corresponding sides to find the scale factor. XRTR 4 48 n XT 4 12 hsm11gmse_0905_t08144.ai 4 3 NX RT RRR is an enlargement of NXTRXJUIBTDBMFGBDUPSPGǔFDPSSFDUBOTXFSJT# y J Got It? 1. Is D(n, O) (JKLM) JRKRLRMRan enlargement or a J reduction? What is the scale factor n of the dilation? 2 2 O M M 3 *O(PU*UZPVMPPLFEBUBEJMBUJPOPGBêHVSFESBXOJOUIF DPPSEJOBUFQMBOF*OUIJTCPPLBMMEJMBUJPOTPGêHVSFTJOUIF DPPSEJOBUFQMBOFIBWFUIFPSJHJOBTUIFDFOUFSPGEJMBUJPO4P ZPVDBOêOEUIFEJMBUJPOJNBHFPGBQPJOUP(x, y CZNVMUJQMZJOH the coordinates of PCZUIFTDBMFGBDUPSn. A dilation of scale factor n with center of dilation at the origin can be written as Dn (x, y) (nx, ny) 588 2 Chapter 9 Transformations K K 4 x L L hsm11gmse_0905_t08145.ai y P(nx, ny) ny P(x, y) y OP n OP x O x nx hsm11gmse_0905_t08148.ai Common Core GEOM12_SE_CCS_C09L06.indd 588 HSM12GESE_CC16.indd 2 7/5/11 2:36:46 PM 8/1/11 1:26:56 PM Problem 2 Will the vertices of the triangle move closer to (0, 0) or farther from (0, 0)? The scale factor is 2, so the dilation is an enlargement. The vertices will move farther from (0, 0). Finding a Dilation Image 2 Z What are the coordinates of the vertices of D2 (GPZG)? Graph the image of GPZG. y x O 6 4 2 *EFOUJGZUIFDPPSEJOBUFTPGFBDIWFSUFYǔFDFOUFSPG *EFOUJGZ dilation is the origin and the scale factor is 2, so use the dilation rule D2(x, y) (2x, 2y). P 4 G Z D2(P) (2 2, 2 (1)), or PR(4, 2). 2 Z y P x geom12_se_ccs_c09l06_t03.ai O P 4 6 4 D2(Z) (2 (2), 2 1), or ZR(4, 2). D2(G) (2 0, 2 (2)), or GR(0, 4). G To graph the image of NPZG, graph PR, ZR, and GR. ǔFOESBX NPRZRGR. G Got It? 2. a. 8IBUBSFUIFDPPSEJOBUFTPGUIFWFSUJDFTPGD1 (NPZG)? 2 b. Reasoning How are PZ and PRZRrelated? How are PG and PRGR, and GZ and GRZRSFMBUFE 6TFUIFTFSFMBUJPOTIJQTUPNBLFBDPOKFDUVSFBCPVUUIF geom12_se_ccs_c09l06_t04.ai effects of dilations on lines. %JMBUJPOTBOETDBMFGBDUPSTIFMQZPVVOEFSTUBOESFBMXPSMEFOMBSHFNFOUTBOE reductions, such as images seen through a microscope or on a computer screen. Problem 3 What does a scale factor of 7 tell you? A scale factor of 7 tells you that the ratio of the image length to the actual length is 7, or image length 7. actual length Using a Scale Factor to Find a Length Biology A magnifying glass shows you an image of an object that is 7 times the object’s actual size. So the scale factor of the enlargement is 7. The photo shows an apple seed under this magnifying glass. What is the actual length of the apple seed? 1.75 7 p image length scale factor actual length 0.25 p Divide each side by 7. ǔFBDUVBMMFOHUIPGUIFBQQMFTFFEJTJO ǔF Got It? 3. ǔFIFJHIUPGBEPDVNFOUPOZPVSDPNQVUFS 1.75 in. TDSFFOJTDN8IFOZPVDIBOHFUIF[PPN TFUUJOHPOZPVSTDSFFOGSPNUPUIF OFXJNBHFPGZPVSEPDVNFOUJTBEJMBUJPOPGUIF QSFWJPVTJNBHFXJUITDBMFGBDUPS8IBUJT the height of the new image? Lesson 9-6 Dilations CC-16 GEOM12_SE_CCS_C09L06.indd 589 HSM12GESE_CC16.indd 3 Dilations 589 3 7/5/11 2:36:51 PM 8/1/11 1:26:57 PM Lesson Check Do you know HOW? 1. ǔFCMVFêHVSFJTBEJMBUJPO JNBHFPGUIFCMBDLêHVSFXJUI center of dilation C. Is the dilation an enlargement or a reduction? What is the scale factor of the dilation? Find the image of each point. 2. D2 (1, 5) 3. D1 (0, 6) 2 Practice PRACTICES 12 5. Vocabulary %FTDSJCFUIFTDBMFGBDUPSPGBSFEVDUJPO 8 6. Error Analysis ǔFCMVF figure is a dilation image PGUIFCMBDLêHVSFGPSB dilation with center A. C 2 hsm11gmse_0905_t09439.ai 4. D10 (0, 0) A. 3 B. hsm11gmse_0905_t09440.ai MATHEMATICAL hsm11gmse_0905_t09442.ai hsm11gmse_0905_t09441.ai PRACTICES 8. A 9. 3 6 hsm11gmse_0905_t06790.ai R 11. 12. hsm11gmse_0905_t06792.ai hsm11gmse_0905_t06791.ai K 13. 2 4 9 10. See Problem 1. C 4 1 6 The blue figure is a dilation image of the black figure. The labeled point is the center of dilation. Tell whether the dilation is an enlargement or a reduction. Then find the scale factor of the dilation. 7. A 5XPTUVEFOUTNBEFFSSPSTXIFOBTLFEUPêOEUIF TDBMFGBDUPS&YQMBJOBOEDPSSFDUUIFJSFSSPST Practice and Problem-Solving Exercises A MATHEMATICAL Do you UNDERSTAND? M L 14. y 6 hsm11gmse_0905_t06793.ai 4 y 15. y 6 1 x hsm11gmse_0905_t06794.ai O 2 3 hsm11gmse_0905_t06795.ai 4 2 x x O 590 Chapter 9 2 4 6 O Transformations hsm11gmse_0905_t06796.ai 4 6 4 2 hsm11gmse_0905_t06797.ai hsm11gmse_0905_t06798.ai Common Core GEOM12_SE_CCS_C09L06.indd 590 HSM12GESE_CC16.indd 4 7/5/11 2:36:57 PM 8/1/11 1:26:58 PM See Problem 2. Find the images of the vertices of GPQR for each dilation. Graph the image. 16. D3 (NPQR) 4 17. D10 (NPQR) 2 R P Q y 3 x O P 1 4 5 1 x O x 1 y 2 P 2 O 4 Q Q y 18. D 3 (NPQR) 2 3 R R See Problem 3. Magnification You look at each object described in Exercises 19–22 under a magnifying glass. Find the actual dimension of each object. hsm11gmse_0905_t06800.ai hsm11gmse_0905_t06801.ai hsm11gmse_0905_t06799.ai 19. ǔF JNBHF PG B CVUUPO JT UJNFT UIF CVUUPOT BDUVBM TJ[F BOE IBT B EJBNFUFS PG DN 20. ǔF JNBHF PG B QJOIFBE JT UJNFT UIF QJOIFBET BDUVBM TJ[F BOE IBT B XJEUI PG 1.36 cm. 21. ǔF JNBHF PG BO BOU JT UJNFT UIF BOUT BDUVBM TJ[F BOE IBT B MFOHUI PG DN 22. ǔF JNBHF PG B DBQJUBM MFUUFS / JT UJNFT UIF MFUUFST BDUVBM TJ[F BOE IBT B IFJHIU PG 1.68 cm. B Apply Find the image of each point for the given scale factor. 23. L(3, 0); D5 (L) 24. N(4, 7); D0.2 (N) 26. F(3, 2); D1 (F) 27. B + 4, 2 , ; D 1 (B) 10 3 5 3 25. A(6, 2); D1.5 (A) 3 28. Q + 6, 2 , ; D6 (Q) Use the graph at the right. Find the vertices of the image of QRTW for a dilation with center (0, 0) and the given scale factor. 29. 14 30. 0.6 31. 0.9 32. 10 Q y W 4 33. 100 2 T 34. Compare and Contrast Compare the definition of scale factor of a dilation UPUIFEFêOJUJPOPGTDBMFGBDUPSPGUXPTJNJMBSQPMZHPOT)PXBSFUIFZBMJLF )PXBSFUIFZEJŀFSFOU 35. Think About a Plan ǔFEJBHSBNBUUIFSJHIUTIPXTNLMN and its image NLRMRNR for a dilation with center P'JOEUIFWBMVFTPG x and y&YQMBJOZPVSSFBTPOJOH t What is the relationship between NLMN and NLRMRNR? t What is the scale factor of the dilation? t 8IJDIWBSJBCMFDBOZPVêOEVTJOHUIFTDBMFGBDUPS 3 1 R L 4 O 2 x x3 hsm11gmse_0905_t06802.ai M L 2 P x M y N N (2y 60) 36. Writing "OFRVJMBUFSBMUSJBOHMFIBTJOTJEFT%FTDSJCFJUTJNBHFGPS BEJMBUJPOXJUIDFOUFSBUPOFPGUIFUSJBOHMFTWFSUJDFTBOETDBMFGBDUPS hsm11gmse_0905_t06804.ai Lesson 9-6 Dilations CC-16 GEOM12_SE_CCS_C09L06.indd 591 HSM12GESE_CC16.indd 5 Dilations 591 5 7/5/11 2:37:02 PM 8/1/11 1:26:59 PM Coordinate Geometry Graph MNPQ and its image MNPQ for a dilation with center (0, 0) and the given scale factor. 37. M(1, 3), N(3, 3), P(5, 3), Q(1, 3); 3 38. M(2, 6), N(4, 10), P(4, 8), Q(2, 12); 14 39. Open-Ended 6TFUIFEJMBUJPODPNNBOEJOHFPNFUSZTPGUXBSFPS ESBXJOHTPGUXBSFUPDSFBUFBEFTJHOUIBUJOWPMWFTSFQFBUFEEJMBUJPOT TVDIBTUIFPOFTIPXOBUUIFSJHIUǔFTPGUXBSFXJMMQSPNQUZPVUP TQFDJGZBDFOUFSPGEJMBUJPOBOEBTDBMFGBDUPS1SJOUZPVSEFTJHOBOE DPMPSJU'FFMGSFFUPVTFPUIFSUSBOTGPSNBUJPOTBMPOHXJUIEJMBUJPOT 40. Copy Reduction :PVSQJDUVSFPGZPVSGBNJMZDSFTUJTJOXJEF:PV OFFEBSFEVDFEDPQZGPSUIFGSPOUQBHFPGUIFGBNJMZOFXTMFUUFSǔF DPQZNVTUêUJOBTQBDFJOXJEF8IBUTDBMFGBDUPSTIPVMEZPVVTF POUIFDPQZNBDIJOFUPBEKVTUUIFTJ[FPGZPVSQJDUVSFPGUIFDSFTU A dilation maps GHIJ onto GHRIRJR. Find the missing values. 41. HI 8 in. HRIR 16 in. 42. HI 7 cm HRIR 5.25 cm 43. HI J ft HRIR 8 ft IJ 5 in. IRJR J in. IJ 7 cm IRJR J cm IJ hsm11gmse_0905_t09542.ai 30 ft IRJR J ft HJ 6 in. HRJR J in. HJ J cm HRJR 9 cm HJ 24 ft T Copy GTBA and point O for each of Exercises 44–47. Draw the dilation image GTBA. 44. D(2, O) (NTBA) 45. D(3, B) (NTBA) 46. D(1, T) (NTBA) 3 47. D(1, O) (NTBA) 2 HRJR 6 ft B O A 48. Reasoning :PVBSFHJWFOAB and its dilation image ARBR with A, B, AR, and BR OPODPMMJOFBS&YQMBJOIPXUPêOEUIFDFOUFSPGEJMBUJPOBOETDBMFGBDUPS Reasoning Write true or false for Exercises 49–52. Explain your answers. hsm11gmse_0905_t06805.ai 49. "EJMBUJPOJTBOJTPNFUSZ 50. A dilation with a scale factor greater than 1 is a reduction. 51. 'PSBEJMBUJPODPSSFTQPOEJOHBOHMFTPGUIFJNBHFBOEQSFJNBHFBSFDPOHSVFOU 52. "EJMBUJPOJNBHFDBOOPUIBWFBOZQPJOUTJODPNNPOXJUIJUTQSFJNBHF C Challenge Coordinate Geometry In the coordinate plane, you can extend dilations to include scale factors that are negative numbers. For Exercises 53 and 54, use GPQR with vertices P(1, 2), Q(3, 4), and R(4, 1). 53. Graph D3 (NPQR). 54. a. Graph D1 (NPQR). b. &YQMBJOXIZUIFEJMBUJPOJOQBSUB NBZCFDBMMFEBreflection through a point. &YUFOEZPVSFYQMBOBUJPOUPBOFXEFêOJUJPOPGQPJOUTZNNFUSZ 592 6 Chapter 9 Transformations Common Core GEOM12_SE_CCS_C09L06.indd 592 HSM12GESE_CC16.indd 6 7/5/11 2:37:07 PM 8/1/11 1:27:00 PM 55. Shadows "ëBTIMJHIUQSPKFDUTBOJNBHF of rectangle ABCD on a wall so that each WFSUFYPGABCDJTGUBXBZGSPNUIF DPSSFTQPOEJOHWFSUFYPGARBRCRDRǔF length of ABJTJOǔFMFOHUIPGARBR is GU)PXGBSGSPNFBDIWFSUFYPGABCD is the light? B C B C A D A D Standardized Test Prep 56. A dilation maps NCDE onto NCRDRER. If CDhsm11gmse_0905_t06807.ai 7.5 ft, CE 15 ft, DRER 3.25 ft, and CRDR 2.5 ft, what is DE? SAT/ACT 1.08 ft 5 ft 9.75 ft 19 ft 57. :PVXBOUUPQSPWFJOEJSFDUMZUIBUUIFEJBHPOBMTPGBSFDUBOHMFBSFDPOHSVFOU"TUIF êSTUTUFQPGZPVSQSPPGXIBUTIPVMEZPVBTTVNF A quadrilateral is not a rectangle. ǔFEJBHPOBMTPGBSFDUBOHMFBSFOPUDPOHSVFOU A quadrilateral has no diagonals. ǔFEJBHPOBMTPGBSFDUBOHMFBSFDPOHSVFOU 58. 8IJDIXPSEDBOEFTDSJCFBLJUF equilateral equiangular DPOWFY scalene 59. Use the figure at the right to answer the questions below. a. %PFTUIFêHVSFIBWFSPUBUJPOBMTZNNFUSZ *GTPJEFOUJGZUIFBOHMFPGSPUBUJPO b. %PFTUIFêHVSFIBWFSFëFDUJPOBMTZNNFUSZ *GTPIPXNBOZMJOFTPGTZNNFUSZ EPFTJUIBWF Short Response Mixed Review hsm11gmse_0905_t09443.ai See Lesson 9-5. 60. NJKLIBTWFSUJDFT J(23, 2), K(4, 1), and L(1, 23). What are the coordinates of J R, KR, and LR if (RxaYis T2, 3)(NJKL) NJ RK RLR? Get Ready! To prepare for Lesson 9-7, do Exercises 61–63. Algebra TRSU NMYZ. Find the value of each variable. 61. a 62. b See Lesson 7-2. M 63. c R 4.5 3 N T 120 a S 50 150 Y b 6 5 c Z U Lesson 9-6 Dilations CC-16 GEOM12_SE_CCS_C09L06.indd 593 HSM12GESE_CC16.indd 7 geom12_se_ccs_c09l06_t0001.ai Dilations 593 7 7/5/11 2:37:12 PM 8/1/11 1:27:01 PM
© Copyright 2026 Paperzz