MATH 1700 Homework Han-Bom Moon Homework 8 Solution Section 4.1 ∼ 4.3. • For every problem, explain your answer. It is not acceptable to write the answer only. 1. Construct the linear competition model that satisfies: (a) The growth rate of the first species is 1.5, and of the second is 1.25; each is diminished by 0.4 times the population of the other. From the conditions, r1 = 1.5, r2 = 1.25, s1 = s2 = 0.4. Therefore Pn+1 = 1.5Pn − 0.4Qn Qn+1 = −0.4Pn + 1.25Qn . (b) In addition to the characteristics of (a), the first species undergoes immigration at 2500 per step, and the second migrates at 1200 per step. Pn+1 = 1.5Pn − 0.4Qn + 2500 Qn+1 = −0.4Pn + 1.25Qn − 1200. 2. Find the unique fixed point of xn+1 = 0.75xn + 0.5yn + 20 yn+1 = 4xn − yn + 40. Suppose that (x, y) is a fixed point. Then x = 0.75x + 0.5y + 20 y = 4x − y + 40, or equivalently, 0.25x − 0.5y = 20 −4x + 2y = 40. From x − 2y = 4(0.25x − 0.5y) = 4 · 20 = 80, −3x = x − 2y + (−4x + 2y) = 80 + 40 = 120 ⇒ x = −40 x − 2y = 80 ⇒ −40 − 2y = 80 ⇒ y = −60 So the fixed point is (−40, −60). 1 MATH 1700 Homework Han-Bom Moon 3. Explain why a unique fixed point does not exist for xn+1 = 2xn + yn + 2 yn+1 = 3xn + 4yn + 9. A fixed point is a solution (x, y) of the system of linear equations x = 2x + y + 2 y = 3x + 4y + 9, or equivalently, −x − y = 2 −3x − 3y = 9. Then 0 = −3(−x − y) + (−3x − 3y) = −3 · 2 + 9 = 3, which is impossible. So there is no solution of this system of linear equations, and it implies that there is no fixed point. 4. Find the fixed point of xn+1 = 2.5xn yn+1 = 0.8yn + 2000 and determine whether it is a sink, source or saddle. If (x, y) is the fixed point, x = 2.5x, y = 0.8y + 2000. So x = 0, y = 10000 and the fixed point is (0, 10000). The general solution of xn+1 = 2.5xn is xn = 2.5n x0 , and the general solution of yn+1 = 0.8yn + 2000 is yn = 0.8n y0 + 2000 · 0.8n − 1 = 0.8n y0 + 10000(1 − 0.8n ). 0.8 − 1 For the initial condition (1, 10000), (xn , yn ) = (2.5n , 0.8n ·10000+10000(1−0.8n )) = (2.5n , 10000) and it diverges from the fixed point as n → ∞. On the other hand, for another initial condition (0, 0), (xn , yn ) = (0, 10000(1 − 0.8n )) and as n → ∞, it approaches (0, 10000). Therefore the fixed point is a sink. " # " # −6 5 5. For u = and v = , compute: 0 3 (a) 3u; " 3u = 3 −6 0 # " = 2 3 · (−6) 3·0 # " = −18 0 # MATH 1700 Homework Han-Bom Moon (b) u + v; " u+v = # −6 0 " + (c) − 12 v; 1 1 − v=− 2 2 " # 5 3 5 3 # " 5 3 " = " # −6 + 5 0+3 = − 21 · 5 − 12 · 3 # " " −1 3 = # " = # # − 52 − 32 (d) 2u − v; " −6 0 2u − v = 2 " 6. For A = # − # 2.75 1.5 2.5 −1 " and B = = −4 −3 1.5 2 # 2 · (−6) − 5 2·0−3 " = −17 −3 # # , compute: (a) 5A; " 2.75 1.5 2.5 −1 5A = 5 # " 5 · 2.75 5 · 1.5 5 · 2.5 5 · (−1) = # " = 13.75 7.5 12.5 −5 # (b) A + B; " −4 −3 1.5 2 # 2.75 + (−4) 1.5 + (−3) 2.5 + 1.5 −1 + 2 # 2.75 1.5 2.5 −1 A+B = " = # " + " = −1.25 −1.5 4 1 # (c) 4A − 2B. " 4A − 2B = 4 " 7. For A = 2 0 5 1 # # " −2 −4 −3 1.5 2 # 4 · 2.75 − 2 · (−4) 4 · 1.5 − 2 · (−3) 4 · 2.5 − 2 · 1.5 4 · (−1) − 2 · 2 = " 2.75 1.5 2.5 −1 " ,u= 3 7 # " , and v = 0 −2 #" " # " = # , compute: (a) Au; " Au = 2 0 5 1 3 7 3 # = 2·3+0·7 5·3+1·7 # " = 6 22 # 19 12 7 −8 # MATH 1700 Homework Han-Bom Moon (b) Av. " # " # " # 0 2 · 0 + 0 · (−2) 0 Av = = = −2 5 · 0 + 1 · (−2) −2 " # " # 2.75 1.5 −4 −3 8. For A = and B = , compute: 2.5 −1 1.5 2 2 0 5 1 #" (a) AB; " AB = 2.75 1.5 2.5 −1 #" −4 −3 1.5 2 # " 2.75 · (−4) + 1.5 · 1.5 2.75 · (−3) + 1.5 · 2 = 2.5 · (−4) + (−1) · 1.5 2.5 · (−3) + (−1) · 2 " # −8.75 −5.25 = −11.5 −9.5 # (b) BA; " BA = −4 −3 1.5 2 #" 2.75 1.5 2.5 −1 # " −4 · 2.75 + (−3) · 2.5 −4 · 1.5 + (−3) · (−1) = 1.5 · 2.75 + 2 · 2.5 1.5 · 1.5 + 2 · (−1) " # −18.5 −3 = 9.125 0.25 # (c) A2 ; " A2 = 2.75 1.5 2.5 −1 #" 2.75 1.5 2.5 −1 # " 2.752 + 1.5 · 2.5 2.75 · 1.5 + 1.5 · (−1) = 2.5 · 2.75 + (−1) · 2.5 2.5 · 1.5 + (−1)2 " # 11.3125 2.625 = 4.375 4.75 # (d) A3 . " A3 = A2 · A = 11.3125 2.625 4.375 4.75 " #" 2.75 1.5 2.5 −1 # 11.3125 · 2.75 + 2.625 · 2.5 11.3125 · 1.5 + 2.625 · (−1) = 4.375 · 2.75 + 4.75 · 2.5 4.375 · 1.5 + 4.75 · (−1) " # 37.671875 14.34375 = 23.90625 1.8125 4 # MATH 1700 Homework Han-Bom Moon 9. Write the system 3x − 6y = 0 5x − 9y = 1 in vector/matrix form and then use the inverse to solve. " #" # " # 3 −6 x 0 = 5 −9 y 1 " x y # " = 3 −6 5 −9 #−1 " # 1 = 3 · (−9) − (−6) · 5 " # " # 1 6 2 = = 3 −3 −1 0 1 So x = 2, y = −1. 5 " −9 6 −5 −3 #" 0 1 #
© Copyright 2026 Paperzz