M 1312 Section 4.3 1 Rectangle Definition: A rectangle is a parallelogram that has a right angle. Corollary 4.3.1: All angles of a rectangle are right angles. Theorem 4.3.2: The diagonals of a rectangle are congruent. A rectangle is a parallelogram: 1)Oppositesidesarecongruent(theyequaleachother). 2) Oppositeanglesarecongruent(theyequaleachother). 3) Consecutiveanglesaresupplementary(theyaddupto180) 4) Diagonalsbisecteachother(theycuteachotherinhalf) 5) Diagonalsarecongruent(theyequaleachother) 6) Allfouranglesare90. Example 1: Given: Rectangle AGPZ A G T P a. GT = 6. Find AZ . b. mAGP = 34. Find mGZA. c. AT = 3x + 13 and TG = 5x - 21. Find GP . Z M 1312 Example 2: Given the rectangle Section 4.3 2 M N Q P a. If QP = 9 and NP = 6, find NQ and MP. b. If MQ = x , MP = 51 and QP = 2 x, find x and the length of QP. Example 3: Given : Rectangle WXYZ with diagonals WY and XZ . Prove: m1 m2 W X V 1 2 Z Statements 1. 2. 3. 4. 5. 6. Y Reasons Rectangle WXYZ with diagonals WY and XZ WZ XY ZY ZY XZY WYZ 1. Given 2 The diagonals of a rectangle are 3. Opposite sides of a rectangle are 4. 5. 6. M 1312 Section 4.3 3 Example 4: Given: rectangle QRST and Parallelogram QZRC, find length of RZ, ZQ and CS if RZ = 6x, ZQ = 3x +2y and CS = 14-x Z R Q TS Example 5: Find the measure of LN. Given LI = 3x-2 and MI = 2x +3 and LMNP is a rectangle. M N I L Square Definition: A square is a rectangle that has two adjacent sides congruent. Corollary 4.3.3: All sides of a square are congruent. P M 1312 Section 4.3 4 Example 6: AGZP is a square with GT = 12. Find AZ . A G T P Z Rhombus Definition: A rhombus is a parallelogram with two congruent adjacent sides. Corollary 4.3.4: All sides of a rhombus are congruent. Theorem 4.3.5: The diagonals of a rhombus are perpendicular. SquaresandRhombi Asquareisaquadrilateralwith4rightanglesand4congruentsides. Arhombusisalsoaquadrilateral,butitscharacterizedby4congruentsides;arhombus doesNOThavefourcongruentangles. Thepropertiesofaparallelogramapplytobothsquaresandrhombi.Arhombushowever hastwospecialproperties: 2) Thediagonalsofarhombusareperpendicular(theyformrightangles) 3) Eachdiagonalofarhombusbisectsapairofoppositeangles(theanglesarecutin half). M 1312 Section 4.3 5 Use for Popper 12 questions 1 and 2. If point D is midpoint of AB and E is the midpoint of AC A 9 18 D 8 E y x B C 30 Popper 12 question 1: Find the value for x. A. 15 B. 9 C. 8 D. 16 E None of these Popper 12 question 2: Find the value for y. A. 15 B. 9 C. 8 D. 16 E None of these Example 7: Given a rhombus ABCD A D B a. If DC = 6.3 , find the perimeter of ABCD. C b. If DB = 8 and AC = 6, find DC. M 1312 Section 4.3 6 Example 8: D C ABCD is a rhombus. mADB = 27. Find the mADC. A B Example 9: FISH is a rhombus with FI = 6x + 2 and SI = 8x - 4. Find FH . F H I S Popper12question3:ABCDisaparallelogram.GiventhatAB= 11x+6,BC= 12x+7,and CD= 13x+2,findthelengthofAD. A. 28 B. 67 C. 31 D. 62 E None of these M 1312 Section 4.3 7 Example 10: Use rhombus ABCD and the given information to find each value. B a. AE = 14 find AC A b. E C mABE = 34 find mABC D c. find mDEA d. = 4x 1 AB = 20 + x find “x” CB Popper 12 question 4: ABCD is a parallelogram. Given that m ∠ A = 2x + 8 and m ∠ B = 3x − 28, find the measure of angle C. A, 92° B. 88° C. 80° D. 52° E. None of These M 1312 Section 4.3 Popper 12 question 5: Given a kite 8 A ABCD. O D B C AC is the perpendicular bisector of BD. Find AD if AO =4 and BD = 6. A. AD = 4 B. AD = 6 C. AD = 5 D. AD =25 E. None of these
© Copyright 2026 Paperzz