1/31/13 ASEN 3200 Orbital Mechanics, Attitude Dynamics and Control Lecture 4: Example Problems 29 January 2013 Michael Croteau, with input from Dr. Nerem Announcements: • Homework 1 due today. Place on side table at front before class begins. • Homework 2 posted. 1 1/31/13 Example 1: Finding E from Me. Given e = 0.37255 and Me = 3.6029 rad, find E. Kepler’s Equation: E − esin E = M e We cannot solve for E directly. Must iterate using: M e − E n + esin E n € E n +1 = E n + 1 − ecos E n We need an initial guess for E0. Your book suggests E 0 = M e + e 2 for M e < π and E€0 = M e − e 2 for M e > π . Note: E and Me are in rad € Now solve for E1, then use this as your new En and €and again until € iterate again within a certain tolerance. € Example 1: Finding E from Me. Given e = 0.37255 and Me = 3.6029 rad, find E. Iteration 1: E 0 = M e − e 2 = 3.6029 − 0.37255 2 = 3.4166 Me > π M e − E 0 + esin E 0 1 − ecos E 0 € 3.6029 − 3.4166 + 0.37255sin 3.4166 E1 = 3.4166 + 1 − 0.37255cos 3.4166 E1 = 3.4793 E1 = E 0 + € check… is |E1 – E0| < tolerance? Say < 1×10-8? E1 − E 0 = 3.4793 − 3.4166 = 0.0627 € 0.0627 < 1 × 10 −8 ? No. Iterate again. € 2 1/31/13 Example 1: Finding E from Me. Given e = 0.37255 and Me = 3.6029 rad, find E. Iteration 2: M e − E1 + esin E1 1 − ecos E1 3.6029 − 3.4793 + 0.37255sin 3.4793 E 2 = 3.4793 + 1 − 0.37255cos 3.4793 E 2 = 3.4794 E 2 = E1 + check… is |E2 – E1| < tolerance? Say < 1×10-8? € E 2 − E1 = 3.4794 − 3.4793 = 0.0001 0.0001 < 1 × 10 −8 ? No. Iterate again. € Example 1: Finding E from Me. Given e = 0.37255 and Me = 3.6029 rad, find E. Iteration 3: M e − E 2 + esin E 2 1 − ecos E 2 3.6029 − 3.4794 + 0.37255sin 3.4794 E 3 = 3.4794 + 1 − 0.37255cos 3.4794 E 3 = 3.4794 E3 = E2 + check… is |E2 – E1| < tolerance? Say < 1×10-8? € Yes, so accept that E = 3.4794 rad 3 1/31/13 Example 2: An Earth satellite is observed to have a perigee height of 100 km and an apogee height of 600 km. Find the period (and e). Example 2: An Earth satellite is observed to have a perigee height of 100 km and an apogee height of 600 km. Find the period (and e). 4 1/31/13 Example 3: How many days each year is the Earth farther from the Sun that 1 AU? (1 AU = 149,597,870 km) Example 3: How many days each year is the Earth farther from the Sun that 1 AU? (1 AU = 149,597,870 km) 5 1/31/13 Example 4: Using Mean/Eccentric Anomalies For a satellite in an Earth orbit with hA = 3000 km and hP = 300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km? Now, find time of flight between E1 and E2. n(t 2 − t1 ) = M 2 − M1 = 42.94° € ⇒ t 2 − t1 = 14.2min € Example 4: Using Mean/Eccentric Anomalies For a satellite in an Earth orbit with hA = 3000 km and hP = 300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km? Now, find time of flight between E1 and E2. n(t 2 − t1 ) = M 2 − M1 = 42.94° € ⇒ t 2 − t1 = 14.2min € 6 1/31/13 Example 5: Using Mean/Eccentric Anomalies What is the altitude of this same satellite 10 minutes past apogee? à At apogee, M1 = 180° à 10 minutes past apoapse: # 10 & M 2 = M1 +181° /hr⋅ % hr( = 210.16° $ 60 ' M 2 = 210.16° = E 2 − esin E 2 e = 0.1682 Solve for E2 by iterating, then: € € a = 8028km r = a(1 − ecos E 2 ) h = r − 6378km € € Example 5: Using Mean/Eccentric Anomalies What is the altitude of this same satellite 10 minutes past apogee? à At apogee, M1 = 180° à 10 minutes past apoapse: # 10 & M 2 = M1 +181° /hr⋅ % hr( = 210.16° $ 60 ' M 2 = 210.16° = E 2 − esin E 2 e = 0.1682 Solve for E2 by iterating, then: € € a = 8028km r = a(1 − ecos E 2 ) h = r − 6378km € € 7 1/31/13 aPluto = 39.48AU ePluto = .25 Example 6: aΨ = 30.07AU eΨ = .00859 Determine the amount of time Pluto is within the orbit of Neptune (Ψ) assuming Ψ’s orbit is circular. € € 1. Determine the true anomaly where the orbits cross, i.e. rPluto = aΨ. $ a (1 − e 2 ) ' Solving for θ: Pluto ) = aΨ rPluto = & &%1+ ecos θ Pluto )( θ Pluto = 22.55° 2. Find the time it takes Pluto to go from perihelion to θP: M = n(t2 − t1 ) = E − esin E € where € 1/ 2 1/ 2 E #1 − e & θ #1 − 0.25 & 22.55 =% ( tan = % ( tan 2 $ 1+ e ' 2 $ 1+ 0.25 ' 2 E = 17.56° tan € Example 6 continued: 2. continued... (t − t P ) = Δt = E − esin E n n= µSun (aPluto ) 3 n = 7.99 × 10 −10 rad ≈ 0.004 ° day sec Δt = 2.89 × 10 8 sec = 3,346days = 9.16years 3. The time within the € orbit of Ψ will be twice this time. € Time = 2Δt = 18.3years Notes: - Period of Pluto’s orbit = 249.2 years € - Actual perihelion of Pluto 9/5/89, and Pluto crossed Ψ orbit 2/11/99 à actual Δt = 9.4 years - Atmos. of Pluto will be frozen in 2020, making any mission less interesting 8 1/31/13 Example 7: A geocentric elliptical orbit has a perigee radius of 9600 km and an apogee radius of 21,000 km. Calculate the time to fly from perigee P to a true anomaly of 120°. t= Me T … so we need Me and T. 2π T = Period = € 2π $ h ' & ) µ2 % 1 − e2 ( 3 e= ra − rp 21000 − 9600 = = 0.37255 ra + rp 21000 + 9600 rp = '3 2π $ 72,472 T= & ) = 18,834 sec 398,600 2 % 1 − 0.37255 2 ( ' h2 $ 1 km 2 & ) ⇒ h = 72,472 µ %1+ ecos θ ( sec Get Me from E: € € € E 1−e θ tan = tan = 1.1711 ⇒ E = 1.7281rad 2 1+ e 2 M 1.3601 M e = E − esin E = 1.3601rad t= eT= 18834 = 4,077sec = 1.132hr 2π 2π € 9
© Copyright 2026 Paperzz