Angew. Chem. 2015, http://dx.doi.org/10.1002/anie.201503345 Data from: Basicity Limits of Neutral Organic Superbases. Ivo Leito,* Ilmar A. Koppel,* Ivar Koppel, Karl Kaupmees, Sofja Tshepelevitsh, and Jaan Saame. Number of phosphorus atoms GB P1 P0 P2 P3 P5 P4 P6 P7 kcal/mol (imme)P3=N-C-N=P3(imme) 360 Guanidino Phosphorus carbenes 359 (imme)P2=N-C-N=P2(imme) 350 Guanidino Phosphorus ylides 348 t-BuCH=P7(imme) 340 338.5 t-Bu-N=P7(imme) t-BuCH=P5(imme) 335.9 334.8 t-BuCH=P4(imme) (imme)P1=N-C-N=P1(imme) t-Bu-N=P5(imme) 327 327.2 Guanidino-phosphazenes t-Bu-CH=P7(dma) 327.1 325.7 t-BuCH=P3(imme) t-Bu-N=P4(imme) 320.3 320 t-Bu-CH=P5(dma) 318.4 Amino Phosporus ylides 318.1 t-BuCH=P2(imme) t-Bu-N=P3(imme) 311.0 310 imme-C-N=P1(imme) t-Bu-N=P7(dma) 306.8 t-Bu-CH=P4(dma) 305 300.0 300 t-Bu-N=P2(imme) 299.5 t-Bu-CH=P1(imme) t-Bu-N=P5(dma) t-Bu-CH=P3(dma) 296 Phosphazenes 294.9 t-Bu-N=P4(dma) C(imme)2 289.0 287.7 t-Bu-CH=P2(dma) 286.7 t-Bu-N=P1(imme) t-Bu-N=P3(dma) 282 282.9 280 t-Bu-N=P2(dma) 267.3 266.6 t-Bu-CH=P1(dma)3 260 Scheme 1. Trends of basicity changes in families of superbases. The Y-axis shows computational gas-phase basicities. The X-axis shows the number of phosphorus atoms in molecular scaffolds. See the article text for full details. t-Bu-N=P1(dma) 252.0 240 1 Table 1. Results of model validation and superbase basicity limit predictions with eq 1.[a] Base series a k[b] Gas phase RMSD[c] GBmax Validation kcal mol -1 kcal mol-1 HN=Pn(H) 0.32 1.78 268 1.6 HN=Pn(Me) 0.27 1.29 307 1.8 (iPr)2C=Pn(H) 0.18 1.43 290 1.8 H2C=Pn(Me) 0.26 1.34 325 1.9 R-NH2 0.05 1.61 214 0.5 R1R2R3N 0.15 1.40 231 0.6 tBu-N=Pn(dma) 0.28 1.30 320 1.6 tBu-CH=Pn(dma) 0.29 1.25 348 1.8 tBu-N=Pn(imme) 0.25 1.33 347 0.7 tBu-CH=Pn(imme) 0.21 1.38 355 0.9 (imme)Pn=N-C-N=Pm(imme) 0.22 1.37 372 0.8 Solution pKa_max RMSD Prediction – – Prediction Ph-N=Pn(dma) in THF 0.79 1.45 32 0.4 tBu-N=Pn(dma) in MeCN 0.67 1.29 56 0.1 [a] See the article text and SI for full details. [b] k ≡ eb, see above. [c] Root mean square deviation of the computed/experimental GB values from those predicted by eq 1. Basicity changes in compound families are modelled with the following equation: GB GBmax (1 ae bn ) (1) where n is the number of phosphorus atoms, GB is the gas-phase basicity, GBmax is the maximum GB obtainable with the particular series and a and b are coefficients. In the case of pKa predictions in acetonitrile or tetrahydrofuran GB and GBmax are substituted by pKa and pKa_max. 2
© Copyright 2025 Paperzz