17B Discussion Sheet 0 1. Find general antiderivative for the given functions. Assume that all functions are defined for all positive real number. (a) f (x) = 4x5 Ans: Z Z f (x) dx = (b) f (x) = 5x4 Ans: Z Z f (x) dx = (c) f (x) = x−1 Ans: 4x dx = 4 Z 4 5x dx = 5 Z Z f (x) dx = (d) f (x) = sin(3x) Ans: Z 5 Z x Z f (x) dx = −1 4 x5 dx = x5 + C. 5 5 x4 dx = x5 + C = x5 + C. 5 Z dx = 1 dx = ln x + C. x 1 sin(3x) dx = − cos(3x) + C. 3 (e) f (x) = cos(5x + 1) Ans: Z Z 1 f (x) dx = cos(5x + 1) dx = sin(5x + 1) + C. 5 (f) f (x) = 5 sec2 (2x − 1) Ans: Z Z 5 f (x) dx = 5 sec2 (2x − 1) dx = tan(2x − 1) + C. 2 √ 3 (g) f (x) = 2 x+x x2 Ans: Z Z √ Z Z 2 x + x3 x2 −3/2 −1/2 f (x) dx = +C dx = 2 x dx + x dx = −4x + x2 2 (h) f (x) = e3x Ans: Z Z f (x) dx = 2 1 e3x dx = e3x + C. 3 (i) f (x) = 2xex Ans: Let u = x2 , then du = 2x dx. Therefore, Z Z Z 2 x2 f (x) dx = 2xe dx = eu du = eu + C = ex + C. 1 Solutions to problems 2 and 3 from discussion sheet #0 January 6, 2015 2. dy dx d = etan(3x) dx tan(3x) = etan 3x sec2 (3x)3 R • b) f (x) = etan(5x) sec2 (5x) ⇒ F (x) = etan(5x) sec2 (5x)dx. Using ”u-substitution” R u u tan(5x) with u = tan(5x) we obtain: F (x) = e5 du = e5 + C = e 5 + C. • a) y = etan(3x) ⇒ 3. dy • a) y = sin2 (3x) ⇒ dx = 2 sin(3x) cos(3x)3 = 6 sin(3x) cos(3x). dy 5 y = sin (3x) ⇒ dx = 5 sin4 (3x) cos(3x)3 = 15 sin4 (3x) cos(3x). R • b) f (x) = 15 cos(5x) sin(5x) ⇒ F (x) = 15 cos(5x) sin(5x)dx = 32 sin2 (5x) + C. R • c) f (x) = 15 cos(5x) sin2 (5x) ⇒ F (x) = 15 cos(5x) sin2 (5x)dx = sin3 (5x) + C. 1 17B Discussion Sheet 0 Problem 4 (a) Take derivative by Chain rule to get: dy 3x2 + 3 = 3 dx x + 3x + 6 (b) We can get a clue from problem (a), where the numerator of the rational function is related to the derivative of its denominator. In particular, (x4 +8x2 +16)0 = 4(x3 +4x), so we have the antiderivative: F (x) = (c) Similarly with (b), since tan x = 1 ln(x4 + 8x2 + 16) 4 sin x , cos x where (cos x)0 = − sin x, we have: F (x) = − ln(cos x) (d) we can use the table to get: 1 F (x) = − ln(cos 7x) 7 (e) Similarly with (d): 1 F (x) = − ln(cos(7x + 9)) 7 1 5. Find a function f (x) whose antiderivative is given as y. Solution: It suffices to find the derivatives for the given functions. (a) y = xsin x Note that ln y = sin x ln x. So, taking derivative with respect to x at each side gives sin x 1 0 y = cos x ln x + . y x So, sin x y = cos x ln x + xsin x . x 0 x2 (b) y = (x3 ) ee Applying product rule and chain rule gives x2 y 0 = 3x2 ee 2 x2 + 2x4 ex ee . (c) y = 12 ex cos x Applying product rule gives 1 y 0 = ex (cos x − sin x) . 2 (d) y = ln (cos x) Applying chain rule gives y 0 = − tan x. (e) y = sin(g(x)) Applying chain rule gives y 0 = cos(g(x))g 0 (x). (f) y = ln(ln x) Applying chain rule gives y0 = 1 1 . x ln x (g) y = ex 2 +x Applying chain rule gives y 0 = (2x + 1)ex (g) y = ln(x + 1) + 2 +x 1 x+1 Applying chain rule gives y0 = 2 x . (x + 1)2 .
© Copyright 2026 Paperzz