Plotting P-x-y diagram for binary system Acetone/water at temperatures 25,100,and 200 C using UNIFAC method and comparing it with experimental results. Unifac Method: The UNIFAC method is based on the UNIQUAC equation, for which the activity coefficients are given by the formula lnγ (i) = lnγc (i) + lnγr (i) (1) where c(i) is combinatorial term to account for molecular size and shape differences, and r(i) is a residual term to account for molecular interactions. Function c(i) contains pure species parameters only, whereas function r(i) incorporates two binary parameters for each pair of molecules.For a multicomponent system, ⎛ ⎛ J (i) ⎞⎞ J (i) + ln ⎜―― lnγc (i) = 1 − J (i) + ln (J (i)) − 5 ⋅ q (i) ⋅ ⎜1 − ―― ⎟⎟ ( ) L i ⎝ ⎝ L (i) ⎠⎠ ⎛ ⎛ ⎛ β (ik) ⎞⎞⎞ β (ik) lnγr (i) = q (i) ⋅ ⎜1 − ∑ ⎜θ (k) ⋅ ――− e (ki) ⋅ ln ⎜――⎟⎟⎟ s (k) ⎝ s (k) ⎠⎠⎠ ⎝ k ⎝ (2) (3) where r (i) J (i) = ――――― ∑ (r (j) ⋅ x (j)) (4) j q (i) L (i) = ――――― ∑ (q (j) ⋅ x (j)) (5) j where r (i) = ∑ ⎛v ⋅ (i) ⋅ R (k)⎞ k ⎠ k ⎝ Non-Commercial Use Only (6) q (i) = ∑ ⎛v ⋅ (i) ⋅ Q (k)⎞ k ⎠ k ⎝ (7) v ⋅ (i) ⋅ Q (k) k e (ki) = ―――― q (i) (8) ∑ (x (i) ⋅ q (i) ⋅ e (ki)) i θ (k) = ――――――― ∑ (x (j) ⋅ q (j)) (9) j s (k) = ∑ (θ (m) ⋅ τ (mk)) (10) m ⎛ −a (mk) ⎞ τ (mk) = exp ⎜――― ⎟ T ⎝ ⎠ (11) T --- Temperature β (ik) = ∑ (e (mi) ⋅ τ (mk)) (12) m Subscript i identifies species, and j is a dummy index running over all species. Subscript k identifies subgroups, and m is a dummy index running over all subgroups.The quantity v ⋅ (i) k is the number of subgroup parameters of type k in a molecule of species i. Values of the subgroup parameters R(k) and Q(k) and of the group interaction parameters a(mk) come from tabulations in the literature. From tables of Appendix G in Smith and Van Ness Subgroups for acetone are 1 CH 3 (k=1) and 1 COCH 3 Subgroups for water is the molecule itself (k=17). In our problem Non-Commercial Use Only (k=19) In our problem k R(k) v ⋅ (1) Q(k) v ⋅ (2) k k −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CH 1 3 0.9011 0.848 1 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− COCH 3 19 1.6724 1.488 1 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− H ⋅O 2 17 0.9200 1.400 0 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Calculations From equations 6 and 7 r1 ≔ 1 ⋅ 0.9011 + 1 ⋅ 1.6724 r2 ≔ 1 ⋅ 0.9200 r1 = 2.574 r2 = 0.92 q1 ≔ 1 ⋅ 0.848 + 1 ⋅ 1.488 q2 ≔ 1 ⋅ 1.400 q1 = 2.336 q2 = 1.4 From the above values using equation 8 e(ki) table is prepared − −−−−−−−−−−−−−−−−−−−−−−−−−−− e (ki) − sample calculation for e(19,1) −−−−−−−−−−−−−−−−−−−−−−−−−−− k i=1 i=2 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 0.363 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 19 0.637 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 0 Non-Commercial Use Only 1 ⋅ 1.488 ――― = 0.637 2.336 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 17 0 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−− Interaction parameters from tables a (1 , 1) = a (19 , 19) = a (17 , 17) = 0 a (1 , 19) = 476.4 a (19 , 1) = 26.76 a (1 , 17) = 1318.00 a (17 , 1) = 300.00 a (19 , 17) = 472.50 a (17 , 19) = −195.40 bar ≡ 10 5 ⋅ Pa joule Rgas ≔ 8.314 ⋅ ――― mole ⋅ K acetone ---- 1 water ---- 2 Experimental values of liquid phase composition (x1exp25), vapor phase composition (y1exp25) of acetone and total pressure of the system are given as shown below. At 25C i ≔ 0 ‥ 16 Non-Commercial Use Only ⎡ 0.0000 ⎤ ⎢ 0.0001 ⎥ ⎢ ⎥ 0.0194 ⎢ ⎥ ⎢ 0.0289 ⎥ ⎢ 0.0449 ⎥ ⎢ 0.0556 ⎥ ⎢ 0.0939 ⎥ ⎢ 0.0951 ⎥ ⎢ ⎥ x1exp25 ≔ ⎢ 0.131 ⎥ i ⎢ 0.147 ⎥ ⎢ 0.1791 ⎥ ⎢ 0.2654 ⎥ ⎢ 0.3538 ⎥ ⎢ ⎥ ⎢ 0.5808 ⎥ ⎢ 0.7852 ⎥ ⎢ 0.9999 ⎥ ⎢⎣ 1.0000 ⎥⎦ ⎡ 0.0000 ⎤ ⎢ 0.0001 ⎥ ⎢ ⎥ ⎢ 0.5234 ⎥ ⎢ 0.6212 ⎥ ⎢ 0.7168 ⎥ ⎢ 0.7591 ⎥ ⎢ 0.8351 ⎥ ⎢ 0.8416 ⎥ ⎢ ⎥ y1exp25 ≔ ⎢ 0.8618 ⎥ i ⎢ 0.8768 ⎥ ⎢ 0.8782 ⎥ ⎢ 0.8856 ⎥ ⎢ 0.8954 ⎥ ⎢ ⎥ ⎢ 0.9158 ⎥ ⎢ 0.9421 ⎥ ⎢ 0.9999 ⎥ ⎢⎣ 1.0000 ⎥⎦ ⎡ 0.0314 ⋅ bar ⎤ ⎢ 0.031597 ⋅ bar ⎥ ⎢ ⎥ ⎢ 0.066795 ⋅ bar ⎥ ⎢ 0.082393 ⋅ bar ⎥ ⎢ 0.108391 ⋅ bar ⎥ ⎢ 0.121457 ⋅ bar ⎥ ⎢ 0.168120 ⋅ bar ⎥ ⎢ 0.168786 ⋅ bar ⎥ ⎢ ⎥ Pexp25 ≔ ⎢ 0.192384 ⋅ bar ⎥ i ⎢ 0.200784 ⋅ bar ⎥ ⎢ 0.213049 ⋅ bar ⎥ ⎢ 0.234781 ⋅ bar ⎥ ⎢ 0.245847 ⋅ bar ⎥ ⎢ ⎥ ⎢ 0.265445 ⋅ bar ⎥ ⎢ 0.284643 ⋅ bar ⎥ ⎢ 0.307856 ⋅ bar ⎥ ⎢⎣ 0.308000 ⋅ bar ⎥⎦ x2exp25 ≔ 1 − x1exp25 Calculation of activity coefficients by UNIFAC-method r1 ≔ 2.574 r2 ≔ 0.9200 q1 ≔ 2.336 q2 ≔ 1.400 r1 J1 ≔ ―――――――― i r1 ⋅ x1exp25 + r2 ⋅ x2exp25 i J1 = i ⎡ 2.798 ⎤ ⎢ 2.797 ⎥ ⎢ ⎥ 2.704 ⎢ ⎥ ⎢ 2.66 ⎥ ⎢ 2.589 ⎥ ⎢ 2.544 ⎥ ⎢ 2.394 ⎥ ⎢ 2.389 ⎥ ⎢ ⎥ ⎢ 2.265 ⎥ ⎢ 2.213 ⎥ ⎢ 2.116 ⎥ ⎢ 1.894 ⎥ ⎢⎣ ⋮ ⎥⎦ i i i From equations 6 and 7 r2 J2 ≔ ―――――――― i r1 ⋅ x1exp25 + r2 ⋅ x2exp25 i J2 = i ⎤ ⎡1 ⎢1 ⎥ ⎢ ⎥ 0.966 ⎢ ⎥ ⎢ 0.951 ⎥ ⎢ 0.925 ⎥ ⎢ 0.909 ⎥ ⎢ 0.856 ⎥ ⎢ 0.854 ⎥ ⎢ ⎥ ⎢ 0.809 ⎥ ⎢ 0.791 ⎥ ⎢ 0.756 ⎥ ⎢ 0.677 ⎥ ⎢⎣ ⋮ ⎥⎦ Non-Commercial Use Only i From equation 4 q1 L1 ≔ ―――――――― i q1 ⋅ x1exp25 + q2 ⋅ x2exp25 i i q2 L2 ≔ ―――――――― i q1 ⋅ x1exp25 + q2 ⋅ x2exp25 i L1 = i ⎡ 1.669 ⎤ ⎢ 1.668 ⎥ ⎢ ⎥ 1.647 ⎢ ⎥ ⎢ 1.637 ⎥ ⎢ 1.62 ⎥ ⎢ 1.609 ⎥ ⎢ 1.57 ⎥ ⎢ 1.569 ⎥ ⎢ ⎥ ⎢ 1.534 ⎥ ⎢ 1.519 ⎥ ⎢ 1.49 ⎥ ⎢ 1.417 ⎥ ⎢⎣ ⋮ ⎥⎦ L2 = i ⎤ ⎡1 ⎢1 ⎥ ⎢ ⎥ 0.987 ⎢ ⎥ ⎢ 0.981 ⎥ ⎢ 0.971 ⎥ ⎢ 0.964 ⎥ ⎢ 0.941 ⎥ ⎢ 0.94 ⎥ ⎢ ⎥ ⎢ 0.919 ⎥ ⎢ 0.911 ⎥ ⎢ 0.893 ⎥ ⎢ 0.849 ⎥ ⎢⎣ ⋮ ⎥⎦ x1exp25 ⋅ q1 ⋅ 0.363 Non-Commercial Use Only i From equation 5 x1exp25 ⋅ q1 ⋅ 0.363 i θ1 ≔ ―――――――― i x1exp25 ⋅ q1 + x2exp25 ⋅ q2 i x1exp25 ⋅ q1 ⋅ 0.637 i θ19 ≔ ―――――――― i x1exp25 ⋅ q1 + x2exp25 ⋅ q2 i i x2exp25 ⋅ q2 ⋅ 1 i θ17 ≔ ―――――――― i x1exp25 ⋅ q1 + x2exp25 ⋅ q2 i θ1 = i ⎤ ⎡0 ⎢ 6.057 ⋅ 10 −5 ⎥ ⎢ ⎥ ⎢ 0.012 ⎥ ⎢ 0.017 ⎥ ⎢ 0.026 ⎥ ⎢ 0.032 ⎥ ⎢ 0.054 ⎥ ⎢ ⎥ ⎢ 0.054 ⎥ ⎢ 0.073 ⎥ ⎢ 0.081 ⎥ ⎢ 0.097 ⎥ ⎢ 0.137 ⎥ ⎢ ⎥ ⎣⋮ ⎦ i From equation 9 i ⎤ ⎡0 ⎢ 1.063 ⋅ 10 −4 ⎥ ⎢ ⎥ ⎢ 0.02 ⎥ ⎢ 0.03 ⎥ ⎢ 0.046 ⎥ ⎢ 0.057 ⎥ ⎢ 0.094 ⎥ ⎢ ⎥ ⎢ 0.095 ⎥ ⎢ 0.128 ⎥ ⎢ 0.142 ⎥ ⎢ 0.17 ⎥ ⎢ 0.24 ⎥ ⎢ ⎥ ⎣⋮ ⎦ θ19 = i θ17 = i ⎤ ⎡1 ⎢1 ⎥ ⎢ ⎥ 0.968 ⎢ ⎥ ⎢ 0.953 ⎥ ⎢ 0.927 ⎥ ⎢ 0.911 ⎥ ⎢ 0.853 ⎥ ⎢ 0.851 ⎥ ⎢ ⎥ ⎢ 0.799 ⎥ ⎢ 0.777 ⎥ ⎢ 0.733 ⎥ ⎢ 0.624 ⎥ ⎢⎣ ⋮ ⎥⎦ From equation 10 τ (mk) s1 ≔ θ1 ⋅ 1 + θ19 ⋅ 0.914 + θ17 ⋅ 0.365 i i i 's in equation 10 are calculated from equation 11 i Sample calculation s19 ≔ θ1 ⋅ 0.202 + θ19 ⋅ 1 + θ17 ⋅ 1.926 i i i i τ (1 , 19) = s17 ≔ θ1 ⋅ 0.012 + θ19 ⋅ 0.205 + θ17 ⋅ 1 i i i i Non-Commercial Use Only ⎛ −476.4 ⎞ exp ⎜――― ⎟ = 0.202 ⎝ 298 ⎠ s1 = i ⎡ 0.365 ⎤ ⎢ 0.365 ⎥ ⎢ ⎥ 0.384 ⎢ ⎥ ⎢ 0.392 ⎥ ⎢ 0.407 ⎥ ⎢ 0.417 ⎥ ⎢ 0.451 ⎥ ⎢ 0.452 ⎥ ⎢ ⎥ ⎢ 0.482 ⎥ ⎢ 0.495 ⎥ ⎢ 0.52 ⎥ ⎢ 0.583 ⎥ ⎢⎣ ⋮ ⎥⎦ s19 = i ⎡ 1.926 ⎤ ⎢ 1.926 ⎥ ⎢ ⎥ 1.887 ⎢ ⎥ ⎢ 1.868 ⎥ ⎢ 1.838 ⎥ ⎢ 1.817 ⎥ ⎢ 1.747 ⎥ ⎢ 1.745 ⎥ ⎢ ⎥ ⎢ 1.682 ⎥ ⎢ 1.655 ⎥ ⎢ 1.602 ⎥ ⎢ 1.469 ⎥ ⎢⎣ ⋮ ⎥⎦ s17 = i ⎤ ⎡1 ⎢1 ⎥ ⎢ ⎥ 0.972 ⎢ ⎥ ⎢ 0.959 ⎥ ⎢ 0.937 ⎥ ⎢ 0.923 ⎥ ⎢ 0.872 ⎥ ⎢ 0.871 ⎥ ⎢ ⎥ ⎢ 0.826 ⎥ ⎢ 0.807 ⎥ ⎢ 0.769 ⎥ ⎢ 0.675 ⎥ ⎢⎣ ⋮ ⎥⎦ ⎛ ⎛ J1 ⎞⎞ J1 i i ⎟⎟ ⎜ ⎜ lnγc1 ≔ 1 − J1 + ln ⎛J1 ⎞ − 5 ⋅ q1 ⋅ ⎜1 − ―― + ln ⎜―― i i L1 L1 ⎟⎟ ⎝ i⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ From equation 2 ⎛ ⎛ J2 ⎞⎞ J2 i i ⎟⎟ ⎜ ⎜ lnγc2 ≔ 1 − J2 + ln ⎛J2 ⎞ − 5 ⋅ q2 ⋅ ⎜1 − ―― + ln ⎜―― i i L2 L2 ⎟⎟ ⎝ i⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ ⎛ ⎛⎛ 0.945 ⎛ 0.945 ⎞⎞ ⎛ 0.71 Non-Commercial Use Only ⎛ 0.71 ⎞⎞ ⎛ 0.135 ⎞⎞⎞ ⎛ ⎛⎛ ⎛ 0.945 ⎞⎞ ⎛ ⎛ 0.71 ⎞⎞ ⎛ 0.945 0.71 0.135 ⎞⎞⎞ lnγr1 ≔ q1 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ――− 0.363 ⋅ ln ⎜――⎟⎟ + ⎜θ19 ⋅ ―― − 0.637 ⋅ ln ⎜―― + ⎜θ17 ⋅ ――⎟⎟⎟ ⎟ ⎟ i i i s19 i s1 s17 ⎟⎟⎟ ⎜⎝ ⎜⎝⎜⎝ ⎜⎝ s1i ⎟⎠⎟⎠ ⎜⎝ ⎜⎝ s19i ⎟⎠⎟⎠ ⎜⎝ i i i ⎠⎠⎠ From equation 3 ⎛ ⎛ 1 ⎞⎞⎞⎞ ⎛⎛ 0.365 ⎞ ⎛ 1.926 ⎞ ⎛ 1 − ln ⎜―― lnγr2 ≔ q2 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ――⎟ + ⎜θ19 ⋅ ――⎟ + ⎜θ17 ⋅ ―― ⎟⎟⎟⎟ i i i i s1 ⎟ ⎜ s19 ⎟ ⎜ s17 s17 ⎟⎟⎟⎟ ⎜⎝ ⎜⎝⎜⎝ ⎜ i ⎠ i i i ⎝ ⎠ ⎝ ⎝ ⎠⎠⎠⎠ lnγr1 = i ⎡ 1.342 ⎤ ⎢ 1.342 ⎥ ⎢ ⎥ 1.247 ⎢ ⎥ ⎢ 1.205 ⎥ ⎢ 1.138 ⎥ ⎢ 1.096 ⎥ ⎢ 0.965 ⎥ ⎢ 0.961 ⎥ ⎢ ⎥ ⎢ 0.859 ⎥ ⎢ 0.818 ⎥ ⎢ 0.744 ⎥ ⎢ 0.585 ⎥ ⎢⎣ ⋮ ⎥⎦ lnγr2 = γ1 ≔ exp ⎛lnγc1 + lnγr1 ⎞ i i i⎠ ⎝ ⎡ 11.485 ⎤ ⎢ 11.473 ⎥ ⎢ ⎥ 9.407 ⎢ ⎥ ⎢ 8.597 ⎥ ⎢ 7.466 ⎥ ⎢ 6.838 ⎥ γ1 = ⎢ 5.185 ⎥ i ⎢ 5 145 ⎥ i sample calculation β (ik) 's are calculated by ( ) β 1 , 19 = equation 12. 0.363 ⋅ 0.202 + 0.637 ⋅ 1 = 0.71 ⎤ ⎡0 ⎡ 1.099 ⎤ ⎢ 2.594 ⋅ 10 −8 ⎥ ⎢ 1.098 ⎥ ⎤ ⎡0 ⎢ ⎥ ⎢ ⎥ −4 ⎢ −8 ⎥ 9.15 ⋅ 10 0.994 2.846 ⋅ 10 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 0.002 ⎥ 0.001 ⎢ 0.947 ⎥ ⎢ ⎥ ⎢ 0.005 ⎥ ⎢ 0.872 ⎥ 0.002 ⎢ ⎥ ⎢ 0.007 ⎥ ⎢ 0.826 ⎥ ⎢ 0.005 ⎥ ⎢ ⎥ ⎢ 0.681 ⎥ ⎢ ⎥ lnγc1 = 0.017 0.007 ⎢ ⎥ i ⎢ 0.677 ⎥ ⎢ ⎥ 0.018 lnγc2 = 0.019 ⎢ ⎥ ⎢ ⎥ i ⎢ ⎥ ⎢ 0.031 ⎥ 0.02 ⎢ 0.565 ⎥ ⎢ ⎥ ⎢ 0.037 ⎥ ⎢ 0.522 ⎥ 0.034 ⎢ ⎥ ⎢ 0.052 ⎥ ⎢ 0.444 ⎥ 0.041 ⎢ ⎥ ⎢ 0.097 ⎥ ⎢ 0.287 ⎥ ⎢ 0.056 ⎥ ⎢ ⎥ ⎢⎣ ⋮ ⎥⎦ ⎢ 0.1 ⎥ ⎣⋮ ⎦ ⎢ ⎥ ⎣⋮ ⎦ γ2 ≔ exp ⎛lnγc2 + lnγr2 ⎞ i i i⎠ ⎝ ⎡1 ⎤ ⎢1 ⎥ ⎢ ⎥ 1.002 ⎢ ⎥ ⎢ 1.004 ⎥ ⎢ 1.01 ⎥ ⎢ 1.014 ⎥ γ2 = ⎢ 1.037 ⎥ i ⎢ 1 038 ⎥ Non-Commercial Use Only γ1 i ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ γ2 5.185 5.145 ⎥ ⎥ 4.153 ⎥ 3.818 ⎥ 3.282 ⎥ 2.392 ⎥ ⎥⎦ ⋮ Psat1 ≔ 0.308 ⋅ bar i Psat2 ≔ 0.0314 ⋅ bar Pcal25 ≔ x1exp25 ⋅ γ1 ⋅ Psat1 + x2exp25 ⋅ γ2 ⋅ Psat2 i i i i i x1exp25 ⋅ γ1 ⋅ Psat1 i i ―――――― y1cal25 ≔ i Pcal25 i y1cal25 = i ⎤ ⎡0 ⎢ 0.011 ⎥ ⎢ ⎥ 0.646 ⎢ ⎥ ⎢ 0.714 ⎥ ⎢ 0.773 ⎥ ⎢ 0.796 ⎥ ⎢ 0.836 ⎥ ⎢ 0.836 ⎥ ⎢ ⎥ ⎢ 0.852 ⎥ ⎢ 0.857 ⎥ ⎢ 0.863 ⎥ ⎢ 0.874 ⎥ ⎢⎣ ⋮ ⎥⎦ Pcal25 = ? bar i Non-Commercial Use Only 1.037 ⎢ 1.038 ⎥ ⎢ ⎥ ⎢ 1.066 ⎥ ⎢ 1.081 ⎥ ⎢ 1.113 ⎥ ⎢ 1.218 ⎥ ⎢⎣ ⋮ ⎥⎦ from literature at 25 C rms ≔ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ 2 ∑ ⎛Pexp25 − Pcal25 ⎞ i i⎠ i ⎝ Root mean square error calculation. rms = ? bar 10 8 6 4 Pexp25 i ――― bar Pexp25 i ――― bar 2 0 -2 Non-Commercial Use Only Pcal25 i ――― bar Pcal25 i ――― bar -4 -6 -8 -10 -10 -8 -6 -4 -2 0 x1exp25 y1exp25 x1exp25 2 i i i y1cal25 i Similar calculations were carried on at 100 and 200 C At 100C ⎡ 0.00000 ⎤ ⎢ 0.00330 ⎥ ⎢ ⎥ 0.00400 ⎥ ⎢ ⎢ 0.00450 ⎥ ⎢ 0.00800 ⎥ ⎢ 0.04800 ⎥ ⎢ 0.08200 ⎥ ⎢ 0.10800 ⎥ ⎥ ⎢ x1exp100 ≔ ⎢ 0.22000 ⎥ i ⎢ 0.30800 ⎥ ⎢ 0 31600 ⎥ Non-Commercial Use Only 4 6 8 10 ⎢ 0.48000 ⎥ ⎢ 0.69500 ⎥ ⎢ ⎥ ⎢ 0.74200 ⎥ ⎢ 0.85400 ⎥ ⎢ 0.97100 ⎥ ⎢⎣ 1.00000 ⎥⎦ ⎡ 0.00000 ⎤ ⎢ 0.09020 ⎥ ⎢ ⎥ 0.10900 ⎢ ⎥ ⎢ 0.11800 ⎥ ⎢ 0.20700 ⎥ ⎢ 0.54500 ⎥ ⎢ 0.61300 ⎥ ⎢ 0.63200 ⎥ ⎢ ⎥ y1exp100 ≔ ⎢ 0.70500 ⎥ i ⎢ 0.71500 ⎥ ⎢ 0.71900 ⎥ ⎢ 0.74700 ⎥ ⎢ 0.80100 ⎥ ⎢ ⎥ ⎢ 0.82300 ⎥ ⎢ 0.87800 ⎥ ⎢ 0.97200 ⎥ ⎢⎣ 1.00000 ⎥⎦ ⎡ 1.013000 ⋅ bar ⎤ ⎢ 1.110056 ⋅ bar ⎥ ⎢ ⎥ 1.130734 ⋅ bar ⎢ ⎥ ⎢ 1.145439 ⋅ bar ⎥ ⎢ 1.303107 ⋅ bar ⎥ ⎢ 2.240790 ⋅ bar ⎥ ⎢ 2.447639 ⋅ bar ⎥ ⎢ 2.785478 ⋅ bar ⎥ ⎢ ⎥ Pexp100 ≔ ⎢ 3.068162 ⋅ bar ⎥ i ⎢ 3.199164 ⋅ bar ⎥ ⎢ 3.206057 ⋅ bar ⎥ ⎢ 3.474955 ⋅ bar ⎥ ⎢ 3.571481 ⋅ bar ⎥ ⎢ ⎥ ⎢ 3.599065 ⋅ bar ⎥ ⎢ 3.674899 ⋅ bar ⎥ ⎢ 3.681805 ⋅ bar ⎥ ⎢⎣ 3.722000 ⋅ bar ⎥⎦ x2exp100 ≔ 1 − x1exp100 r1 ≔ 2.574 r2 ≔ 0.9200 q1 ≔ 2.336 q2 ≔ 1.400 i r1 J1 ≔ ――――――――― i r1 ⋅ x1exp100 + r2 ⋅ x2exp100 i J1 = i ⎡ 2.798 ⎤ ⎢ 2.781 ⎥ ⎢ ⎥ 2.778 ⎢ ⎥ ⎢ 2.775 ⎥ ⎢ 2.758 ⎥ ⎢ 2.576 ⎥ ⎢ 2.438 ⎥ ⎢ 2.343 ⎥ ⎢ ⎥ ⎢ 2.005 ⎥ ⎢ 1.801 ⎥ ⎢ 1.784 ⎥ ⎢ 1.502 ⎥ ⎢⎣ ⋮ ⎥⎦ r2 J2 ≔ ――――――――― i r1 ⋅ x1exp100 + r2 ⋅ x2exp100 i i J2 = i ⎤ ⎡1 ⎢ 0.994 ⎥ ⎢ ⎥ 0.993 ⎢ ⎥ ⎢ 0.992 ⎥ ⎢ 0.986 ⎥ ⎢ 0.921 ⎥ ⎢ 0.872 ⎥ ⎢ 0.837 ⎥ ⎢ ⎥ ⎢ 0.717 ⎥ ⎢ 0.644 ⎥ ⎢ 0.638 ⎥ ⎢ 0.537 ⎥ ⎢⎣ ⋮ ⎥⎦ Non-Commercial Use Only i i q1 L1 ≔ ――――――――― i q1 ⋅ x1exp100 + q2 ⋅ x2exp100 i L1 = i ⎡ 1.669 ⎤ ⎢ 1.665 ⎥ ⎢ ⎥ 1.664 ⎢ ⎥ ⎢ 1.664 ⎥ ⎢ 1.66 ⎥ ⎢ 1.617 ⎥ ⎢ 1.582 ⎥ ⎢ 1.556 ⎥ ⎢ ⎥ ⎢ 1.455 ⎥ ⎢ 1.384 ⎥ ⎢ 1.378 ⎥ ⎢ 1.263 ⎥ ⎢⎣ ⋮ ⎥⎦ i q2 L2 ≔ ――――――――― i q1 ⋅ x1exp100 + q2 ⋅ x2exp100 i L2 = i Non-Commercial Use Only ⎤ ⎡1 ⎢ 0.998 ⎥ ⎢ ⎥ 0.997 ⎢ ⎥ ⎢ 0.997 ⎥ ⎢ 0.995 ⎥ ⎢ 0.969 ⎥ ⎢ 0.948 ⎥ ⎢ 0.933 ⎥ ⎢ ⎥ ⎢ 0.872 ⎥ ⎢ 0.829 ⎥ ⎢ 0.826 ⎥ ⎢ 0.757 ⎥ ⎢⎣ ⋮ ⎥⎦ i x1exp100 ⋅ q1 ⋅ 0.363 i θ1 ≔ ――――――――― i x1exp100 ⋅ q1 + x2exp100 ⋅ q2 i i i i x2exp100 ⋅ q2 i ――――――――― θ17 ≔ i x1exp100 ⋅ q1 + x2exp100 ⋅ q2 ⎤ ⎡0 ⎢ 0.002 ⎥ ⎢ ⎥ 0.002 ⎢ ⎥ ⎢ 0.003 ⎥ ⎢ 0.005 ⎥ ⎢ 0.028 ⎥ ⎢ 0.047 ⎥ ⎢ 0.061 ⎥ ⎢ ⎥ ⎢ 0.116 ⎥ ⎢ 0.155 ⎥ ⎢ 0.158 ⎥ ⎢ 0.22 ⎥ ⎢⎣ ⋮ ⎥⎦ θ1 = x1exp100 ⋅ q1 ⋅ 0.637 i θ19 ≔ ――――――――― i x1exp100 ⋅ q1 + x2exp100 ⋅ q2 i ⎤ ⎡0 ⎢ 0.003 ⎥ ⎢ ⎥ 0.004 ⎢ ⎥ ⎢ 0.005 ⎥ ⎢ 0.008 ⎥ ⎢ 0.049 ⎥ ⎢ 0.083 ⎥ ⎢ 0.107 ⎥ ⎢ ⎥ ⎢ 0.204 ⎥ ⎢ 0.271 ⎥ ⎢ 0.277 ⎥ ⎢ 0.386 ⎥ ⎢⎣ ⋮ ⎥⎦ θ19 = i i θ17 = i ⎤ ⎡1 ⎢ 0.995 ⎥ ⎢ ⎥ 0.993 ⎢ ⎥ ⎢ 0.993 ⎥ ⎢ 0.987 ⎥ ⎢ 0.922 ⎥ ⎢ 0.87 ⎥ ⎢ 0.832 ⎥ ⎢ ⎥ ⎢ 0.68 ⎥ ⎢ 0.574 ⎥ ⎢ 0.565 ⎥ ⎢ 0.394 ⎥ ⎢⎣ ⋮ ⎥⎦ s1 ≔ θ1 ⋅ 1 + θ19 ⋅ 0.9308 + θ17 ⋅ 0.4474 i i i i s19 ≔ θ1 ⋅ 0.2788 + θ19 ⋅ 1 + θ17 ⋅ 1.6885 i i i i Non-Commercial Use Only i s17 ≔ θ1 ⋅ 0.0292 + θ19 ⋅ 0.2818 + θ17 ⋅ 1 i s1 = i i ⎡ 0.447 ⎤ ⎢ 0.45 ⎥ ⎢ ⎥ 0.451 ⎢ ⎥ ⎢ 0.451 ⎥ ⎢ 0.454 ⎥ ⎢ 0.487 ⎥ ⎢ 0.513 ⎥ ⎢ 0.533 ⎥ ⎢ ⎥ ⎢ 0.61 ⎥ ⎢ 0.664 ⎥ ⎢ 0.669 ⎥ ⎢ 0.756 ⎥ ⎢⎣ ⋮ ⎥⎦ i i s19 = i ⎡ 1.689 ⎤ ⎢ 1.683 ⎥ ⎢ ⎥ 1.682 ⎢ ⎥ ⎢ 1.681 ⎥ ⎢ 1.676 ⎥ ⎢ 1.615 ⎥ ⎢ 1.565 ⎥ ⎢ 1.529 ⎥ ⎢ ⎥ ⎢ 1.384 ⎥ ⎢ 1.284 ⎥ ⎢ 1.275 ⎥ ⎢ 1.112 ⎥ ⎢⎣ ⋮ ⎥⎦ s17 = ⎛ ⎛ J1 ⎞⎞ J1 i ⎜ ⎜ i ⎟⎟ lnγc1 ≔ 1 − J1 + ln ⎛J1 ⎞ − 5 ⋅ 2.336 ⋅ ⎜1 − ―― + ln ⎜―― i i i L1 L1 ⎟⎟ ⎝ ⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ ⎛ ⎛ J2 ⎞⎞ J2 i ⎜ ⎜ i ⎟⎟ lnγc2 ≔ 1 − J2 + ln ⎛J2 ⎞ − 5 ⋅ 1.400 ⋅ ⎜1 − ―― + ln ⎜―― i i L2 L2 ⎟⎟ ⎝ i⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ Non-Commercial Use Only i ⎤ ⎡1 ⎢ 0.996 ⎥ ⎢ ⎥ 0.995 ⎢ ⎥ ⎢ 0.994 ⎥ ⎢ 0.989 ⎥ ⎢ 0.937 ⎥ ⎢ 0.895 ⎥ ⎢ 0.864 ⎥ ⎢ ⎥ ⎢ 0.741 ⎥ ⎢ 0.655 ⎥ ⎢ 0.647 ⎥ ⎢ 0.509 ⎥ ⎢⎣ ⋮ ⎥⎦ ⎛ ⎛ 0.956 ⎞⎞ ⎛ ⎛ 0.738 ⎞⎞ ⎛ ⎛⎛ 0.956 0.738 0.190 ⎞⎞⎞ lnγr1 ≔ q1 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ――− 0.363 ⋅ ln ⎜――⎟⎟ + ⎜θ19 ⋅ ――− 0.637 ⋅ ln ⎜――⎟⎟ + ⎜θ17 ⋅ ――⎟⎟⎟ i i i i s1 s19 s17 ⎟⎟⎟ ⎜⎝ ⎜⎝⎜⎝ ⎜⎝ s1i ⎟⎠⎟⎠ ⎜⎝ ⎜⎝ s19i ⎟⎠⎟⎠ ⎜⎝ i i i ⎠⎠⎠ ⎛ ⎛ 1 ⎞⎞⎞⎞ ⎛⎛ 0.4474 ⎞ ⎛ 1.6885 ⎞ ⎛ 1 lnγr2 ≔ q2 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ――― + ⎜θ19 ⋅ ――― + ⎜θ17 ⋅ ―― − ln ⎜―― ⎟ ⎟ ⎟⎟⎟⎟ i i s1 ⎟ ⎜ i s19 ⎟ ⎜ i s17 ⎜⎝ ⎜⎝⎜⎝ ⎜⎝ s17i ⎟⎠⎟⎠⎟⎠⎟⎠ i i ⎠ i ⎠ ⎝ ⎝ lnγc1 = i ⎡ 1.099 ⎤ ⎢ 1.08 ⎥ ⎢ ⎥ 1.076 ⎢ ⎥ ⎢ 1.073 ⎥ ⎢ 1.054 ⎥ ⎢ 0.859 ⎥ ⎢ 0.723 ⎥ ⎢ 0.634 ⎥ ⎢ ⎥ ⎢ 0.362 ⎥ ⎢ 0.231 ⎥ ⎢ 0.222 ⎥ ⎢ 0.09 ⎥ ⎢⎣ ⋮ ⎥⎦ lnγc2 = i ⎤ ⎡0 ⎢ 3.069 ⋅ 10 −5 ⎥ ⎢ ⎥ −5 ⎢ 4.5 ⋅ 10 ⎥ ⎢ 5.686 ⋅ 10 −5 ⎥ ⎢ 1.778 ⋅ 10 −4 ⎥ ⎢ ⎥ ⎢ 0.006 ⎥ ⎢ 0.015 ⎥ ⎢ 0.024 ⎥ ⎢ 0.076 ⎥ ⎢ 0.123 ⎥ ⎢ ⎥ ⎢ 0.127 ⎥ ⎢ 0.211 ⎥ ⎣⋮ ⎦ lnγr1 = i γ1 ≔ exp ⎛lnγc1 + lnγr1 ⎞ i i i⎠ ⎝ ⎡ 11.058 ⎤ ⎢ 10.707 ⎥ ⎢ ⎥ 10.634 ⎢ ⎥ ⎢ 10.583 ⎥ ⎢ 10.235 ⎥ ⎢ 7.265 ⎥ γ1 = ⎢ 5.697 ⎥ γ2 = ⎢ ⎥ ⎡ 1.304 ⎤ ⎢ 1.291 ⎥ ⎢ ⎥ 1.288 ⎢ ⎥ ⎢ 1.286 ⎥ ⎢ 1.272 ⎥ ⎢ 1.124 ⎥ ⎢ 1.017 ⎥ ⎢ 0.944 ⎥ ⎢ ⎥ ⎢ 0.694 ⎥ ⎢ 0.548 ⎥ ⎢ 0.536 ⎥ ⎢ 0.333 ⎥ ⎢⎣ ⋮ ⎥⎦ γ2 ≔ exp ⎛lnγc2 + lnγr2 ⎞ i i i⎠ ⎝ ⎡1 ⎤ ⎢1 ⎥ ⎢ ⎥ 1 ⎢ ⎥ ⎢1 ⎥ ⎢1 ⎥ ⎢ 1.01 ⎥ ⎢ 1.027 ⎥ ⎢ ⎥ Non-Commercial Use Only lnγr2 = i ⎤ ⎡0 ⎢ 2.257 ⋅ 10 −5 ⎥ ⎢ ⎥ −5 ⎢ 3.31 ⋅ 10 ⎥ ⎢ 4.184 ⋅ 10 −5 ⎥ ⎢ 1.311 ⋅ 10 −4 ⎥ ⎢ ⎥ ⎢ 0.004 ⎥ ⎢ 0.012 ⎥ ⎢ 0.019 ⎥ ⎢ 0.068 ⎥ ⎢ 0.12 ⎥ ⎢ ⎥ ⎢ 0.125 ⎥ ⎢ 0.259 ⎥ ⎣⋮ ⎦ γ1 = i ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ 5.697 ⎥ 4.847 ⎥ ⎥ 2.875 ⎥ 2.178 ⎥ 2.133 ⎥ 1.526 ⎥ ⎥⎦ ⋮ γ2 = i ⎢ 1.027 ⎥ ⎢ 1.045 ⎥ ⎢ ⎥ ⎢ 1.155 ⎥ ⎢ 1.275 ⎥ ⎢ 1.287 ⎥ ⎢ 1.601 ⎥ ⎢⎣ ⋮ ⎥⎦ Psat1 ≔ 3.722 ⋅ bar Psat2 ≔ 1.013 ⋅ bar Pcal100 ≔ x1exp100 ⋅ γ1 ⋅ Psat1 + x2exp100 ⋅ γ2 ⋅ Psat2 i i i i i x1exp100 ⋅ γ1 ⋅ Psat1 i i y1cal100 ≔ ―――――― i Pcal100 i y1cal100 = i ⎤ ⎡0 ⎢ 0.115 ⎥ ⎢ ⎥ 0.136 ⎢ ⎥ ⎢ 0.149 ⎥ ⎢ 0.233 ⎥ ⎢ 0.571 ⎥ ⎢ 0.645 ⎥ ⎢ 0.674 ⎥ ⎢ ⎥ ⎢ 0.721 ⎥ ⎢ 0.736 ⎥ ⎢ 0.738 ⎥ ⎢ 0.764 ⎥ ⎢⎣ ⋮ ⎥⎦ Pcal100 = ? bar i Non-Commercial Use Only rms ≔ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ 2 ∑ ⎛Pexp100 − Pcal100 ⎞ i i⎠ i ⎝ rms = ? bar 10 8 6 4 Non-Commercial Use Only Pexp100 i ――― bar Pexp100 i ――― bar Pcal100 i ――― bar Pcal100 i ――― bar 2 0 -2 -4 -6 -8 -10 -10 -8 -6 -4 -2 0 x1exp100 2 4 6 i y1exp100 i x1exp100 i y1cal100 i At 200C ⎡ 0.0000 ⎤ ⎢ 0.0013 ⎥ ⎢ ⎥ ⎢ 0.0182 ⎥ ⎢ 0.0450 ⎥ ⎢ 0.0920 ⎥ ⎢ 0.2260 ⎥ ⎢ 0.3620 ⎥ ⎢ 0.4460 ⎥ ⎥ ⎢ x1exp200 ≔ ⎢ 0.5510 ⎥ i ⎢ 0.6590 ⎥ ⎢ 0 7580 ⎥ ⎡ 0.0000 ⎤ ⎢ 0.0160 ⎥ ⎢ ⎥ ⎢ 0.1360 ⎥ ⎢ 0.2680 ⎥ ⎢ 0.3540 ⎥ ⎢ 0.4550 ⎥ ⎢ 0.5020 ⎥ ⎢ 0.5400 ⎥ ⎥ ⎢ y1exp200 ≔ ⎢ 0.5950 ⎥ i ⎢ 0.6650 ⎥ ⎢ 0 7430 ⎥ ⎡ 15.552476 ⋅ bar ⎤ ⎢ 15.995808 ⋅ bar ⎥ ⎢ ⎥ ⎢ 18.202126 ⋅ bar ⎥ ⎢ 21.511604 ⋅ bar ⎥ ⎢ 24.200554 ⋅ bar ⎥ ⎢ 27.303190 ⋅ bar ⎥ ⎢ 28.751086 ⋅ bar ⎥ ⎢ 29.440560 ⋅ bar ⎥ ⎥ ⎢ Pexp200 ≔ ⎢ 30.267930 ⋅ bar ⎥ i ⎢ 30.543720 ⋅ bar ⎥ ⎢ 30 336877 ⋅ bar ⎥ Non-Commercial Use Only 8 10 ⎢ 0.8160 ⎥ ⎢ 0.9300 ⎥ ⎢ ⎥ ⎢ 0.9400 ⎥ ⎢ 0.9780 ⎥ ⎢ 0.9790 ⎥ ⎢⎣ 1.0000 ⎥⎦ ⎢ 0.7940 ⎥ ⎢ 0.9190 ⎥ ⎢ ⎥ ⎢ 0.9310 ⎥ ⎢ 0.9760 ⎥ ⎢ 0.9790 ⎥ ⎢⎣ 1.0000 ⎥⎦ ⎢ 29.992140 ⋅ bar ⎥ ⎢ 28.475296 ⋅ bar ⎥ ⎢ ⎥ ⎢ 28.406349 ⋅ bar ⎥ ⎢ 27.923717 ⋅ bar ⎥ ⎢ 27.923717 ⋅ bar ⎥ ⎢⎣ 26.699899 ⋅ bar ⎥⎦ x2exp200 ≔ 1 − x1exp200 i r1 ≔ 2.574 i r2 ≔ 0.9200 q1 ≔ 2.336 q2 ≔ 1.400 r1 J1 ≔ ――――――――― i r1 ⋅ x1exp200 + r2 ⋅ x2exp200 i i r2 J2 ≔ ――――――――― i r1 ⋅ x1exp200 + r2 ⋅ x2exp200 i J1 = i ⎡ 2.798 ⎤ ⎢ 2.791 ⎥ ⎢ ⎥ 2.709 ⎢ ⎥ ⎢ 2.588 ⎥ ⎢ 2.401 ⎥ ⎢ 1.989 ⎥ ⎢ 1.695 ⎥ ⎢ 1.553 ⎥ ⎢ ⎥ ⎢ 1.406 ⎥ ⎢ 1.281 ⎥ ⎢ 1.184 ⎥ ⎢ 1 134 ⎥ i J2 = i ⎡1 ⎤ ⎢ 0.998 ⎥ ⎢ ⎥ 0.968 ⎢ ⎥ ⎢ 0.925 ⎥ ⎢ 0.858 ⎥ ⎢ 0.711 ⎥ ⎢ 0.606 ⎥ ⎢ 0.555 ⎥ ⎢ ⎥ ⎢ 0.502 ⎥ ⎢ 0.458 ⎥ ⎢ 0.423 ⎥ ⎢ 0 405 ⎥ Non-Commercial Use Only ⎢⎣ ⋮ ⎥⎦ ⎢⎣ ⋮ q1 L1 ≔ ――――――――― i q1 ⋅ x1exp200 + q2 ⋅ x2exp200 i L1 = i ⎡ 1.669 ⎤ ⎢ 1.667 ⎥ ⎢ ⎥ 1.649 ⎢ ⎥ ⎢ 1.62 ⎥ ⎢ 1.572 ⎥ ⎢ 1.45 ⎥ ⎢ 1.343 ⎥ ⎢ 1.285 ⎥ ⎢ ⎥ ⎢ 1.219 ⎥ ⎢ 1.158 ⎥ ⎢ 1.107 ⎥ ⎢ 1.08 ⎥ ⎢⎣ ⋮ ⎥⎦ i ⎥⎦ q2 L2 ≔ ――――――――― i q1 ⋅ x1exp200 + q2 ⋅ x2exp200 i L2 = i Non-Commercial Use Only ⎤ ⎡1 ⎢ 0.999 ⎥ ⎢ ⎥ 0.988 ⎢ ⎥ ⎢ 0.971 ⎥ ⎢ 0.942 ⎥ ⎢ 0.869 ⎥ ⎢ 0.805 ⎥ ⎢ 0.77 ⎥ ⎢ ⎥ ⎢ 0.731 ⎥ ⎢ 0.694 ⎥ ⎢ 0.664 ⎥ ⎢ 0.647 ⎥ ⎢⎣ ⋮ ⎥⎦ i x1exp200 ⋅ q1 ⋅ 0.363 i θ1 ≔ ――――――――― i x1exp200 ⋅ q1 + x2exp200 ⋅ q2 i i ⎤ ⎡0 ⎢ 7.867 ⋅ 10 −4 ⎥ ⎢ ⎥ ⎢ 0.011 ⎥ ⎢ 0.026 ⎥ ⎢ 0.052 ⎥ ⎢ 0.119 ⎥ ⎢ 0.177 ⎥ ⎢ ⎥ ⎢ 0.208 ⎥ ⎢ 0.244 ⎥ ⎢ 0.277 ⎥ ⎢ 0.305 ⎥ ⎢ 0.32 ⎥ ⎢ ⎥ ⎣⋮ ⎦ θ1 = i x1exp200 ⋅ q1 ⋅ 0.637 i θ19 ≔ ――――――――― i x1exp200 ⋅ q1 + x2exp200 ⋅ q2 i x2exp200 ⋅ q2 i θ17 ≔ ――――――――― i x1exp200 ⋅ q1 + x2exp200 ⋅ q2 i i θ19 = i ⎡0 ⎤ ⎢ 0.001 ⎥ ⎢ ⎥ 0.019 ⎢ ⎥ ⎢ 0.046 ⎥ ⎢ 0.092 ⎥ ⎢ 0.209 ⎥ ⎢ 0.31 ⎥ ⎢ 0.365 ⎥ ⎢ ⎥ ⎢ 0.428 ⎥ ⎢ 0.486 ⎥ ⎢ 0.535 ⎥ ⎢ 0.561 ⎥ ⎢⎣ ⋮ ⎥⎦ s1 ≔ θ1 ⋅ 1 + θ19 ⋅ 0.945 + θ17 ⋅ 0.53 i i i i s19 ≔ θ1 ⋅ 0.365 + θ19 ⋅ 1 + θ17 ⋅ 1.512 i i i i i Non-Commercial Use Only θ17 = i ⎡1 ⎤ ⎢ 0.998 ⎥ ⎢ ⎥ 0.97 ⎢ ⎥ ⎢ 0.927 ⎥ ⎢ 0.855 ⎥ ⎢ 0.672 ⎥ ⎢ 0.514 ⎥ ⎢ 0.427 ⎥ ⎢ ⎥ ⎢ 0.328 ⎥ ⎢ 0.237 ⎥ ⎢ 0.161 ⎥ ⎢ 0.119 ⎥ ⎢⎣ ⋮ ⎥⎦ s17 ≔ θ1 ⋅ 0.062 + θ19 ⋅ 0.368 + θ17 ⋅ 1 i s1 = i i ⎡ 0.53 ⎤ ⎢ 0.531 ⎥ ⎢ ⎥ 0.543 ⎢ ⎥ ⎢ 0.562 ⎥ ⎢ 0.593 ⎥ ⎢ 0.672 ⎥ ⎢ 0.742 ⎥ ⎢ 0.779 ⎥ ⎢ ⎥ ⎢ 0.822 ⎥ ⎢ 0.862 ⎥ ⎢ 0.895 ⎥ ⎢ 0.913 ⎥ ⎢⎣ ⋮ ⎥⎦ i i s19 = i ⎡ 1.512 ⎤ ⎢ 1.51 ⎥ ⎢ ⎥ 1.49 ⎢ ⎥ ⎢ 1.458 ⎥ ⎢ 1.405 ⎥ ⎢ 1.269 ⎥ ⎢ 1.151 ⎥ ⎢ 1.086 ⎥ ⎢ ⎥ ⎢ 1.013 ⎥ ⎢ 0.945 ⎥ ⎢ 0.889 ⎥ ⎢ 0.858 ⎥ ⎢⎣ ⋮ ⎥⎦ ⎛ ⎛ J1 ⎞⎞ J1 i ⎜ ⎜ i ⎟⎟ lnγc1 ≔ 1 − J1 + ln ⎛J1 ⎞ − 5 ⋅ 2.336 ⋅ ⎜1 − ―― + ln ⎜―― i i L1 L1 ⎟⎟ ⎝ i⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ ⎛ ⎛ J2 ⎞⎞ J2 i ⎜ ⎜ i ⎟⎟ ⎛ ⎞ ―― lnγc2 ≔ 1 − J2 + ln J2 − 5 ⋅ 1.400 ⋅ ⎜1 − + ln ⎜―― i i L2 L2 ⎟⎟ ⎝ i⎠ i ⎜⎝ ⎜⎝ i ⎟⎠⎟⎠ Non-Commercial Use Only s17 = i ⎤ ⎡1 ⎢ 0.998 ⎥ ⎢ ⎥ 0.978 ⎢ ⎥ ⎢ 0.946 ⎥ ⎢ 0.893 ⎥ ⎢ 0.757 ⎥ ⎢ 0.639 ⎥ ⎢ 0.574 ⎥ ⎢ ⎥ ⎢ 0.501 ⎥ ⎢ 0.433 ⎥ ⎢ 0.376 ⎥ ⎢ 0.345 ⎥ ⎢⎣ ⋮ ⎥⎦ ⎛ ⎛ 0.965 ⎞⎞ ⎛ ⎛ 0.769 ⎞⎞ ⎛ ⎛⎛ 0.965 0.769 0.257 ⎞⎞⎞ lnγr1 ≔ q1 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ――− 0.363 ⋅ ln ⎜――⎟⎟ + ⎜θ19 ⋅ ――− 0.637 ⋅ ln ⎜――⎟⎟ + ⎜θ17 ⋅ ――⎟⎟⎟ i i i i s1 s19 s17 ⎟⎟⎟ ⎜⎝ ⎜⎝⎜⎝ ⎜⎝ s1i ⎟⎠⎟⎠ ⎜⎝ ⎜⎝ s19i ⎟⎠⎟⎠ ⎜⎝ i i i ⎠⎠⎠ ⎛ ⎛ 1 ⎞⎞⎞⎞ ⎛⎛ 0.53 ⎞ ⎛ 1.512 ⎞ ⎛ 1 lnγr2 ≔ q2 ⋅ ⎜1 − ⎜⎜θ1 ⋅ ―― + ⎜θ19 ⋅ ――⎟ + ⎜θ17 ⋅ ―― − ln ⎜―― ⎟ ⎟⎟⎟⎟ i i s1 ⎟ ⎜ i s19 ⎟ ⎜ i s17 ⎜⎝ ⎜⎝⎜⎝ ⎜⎝ s17i ⎟⎠⎟⎠⎟⎠⎟⎠ i ⎠ i ⎠ i ⎝ ⎝ lnγc1 = i ⎡ 1.099 ⎤ ⎢ 1.091 ⎥ ⎢ ⎥ 1 ⎢ ⎥ ⎢ 0.872 ⎥ ⎢ 0.687 ⎥ ⎢ 0.351 ⎥ ⎢ 0.174 ⎥ ⎢ 0.11 ⎥ ⎢ ⎥ ⎢ 0.059 ⎥ ⎢ 0.028 ⎥ ⎢ 0.012 ⎥ ⎢ 0.006 ⎥ ⎢⎣ ⋮ ⎥⎦ lnγc2 = i ⎤ ⎡0 ⎢ 4.792 ⋅ 10 −6 ⎥ ⎢ ⎥ −4 ⎢ 8.921 ⋅ 10 ⎥ ⎢ 0.005 ⎥ ⎢ 0.018 ⎥ ⎢ 0.079 ⎥ ⎢ ⎥ ⎢ 0.151 ⎥ ⎢ 0.194 ⎥ ⎢ 0.245 ⎥ ⎢ 0.292 ⎥ ⎢ 0.33 ⎥ ⎢ 0.35 ⎥ ⎢ ⎥ ⎣⋮ ⎦ lnγr1 = i γ1 ≔ exp ⎛lnγc1 + lnγr1 ⎞ i i i⎠ ⎝ ⎡ 10.344 ⎤ ⎢ 10.222 ⎥ ⎢ ⎥ 8.81 ⎢ ⎥ ⎢ 7.122 ⎥ ⎡ 1.238 ⎤ ⎢ 1.233 ⎥ ⎢ ⎥ 1.176 ⎢ ⎥ ⎢ 1.091 ⎥ ⎢ 0.96 ⎥ ⎢ 0.67 ⎥ ⎢ 0.456 ⎥ ⎢ 0.351 ⎥ ⎢ ⎥ ⎢ 0.241 ⎥ ⎢ 0.148 ⎥ ⎢ 0.08 ⎥ ⎢ 0.049 ⎥ ⎢⎣ ⋮ ⎥⎦ γ2 ≔ exp ⎛lnγc2 + lnγr2 ⎞ i i i⎠ ⎝ ⎤ ⎡1 ⎢1 ⎥ ⎢ ⎥ 1.001 ⎢ ⎥ ⎢ 1.008 ⎥ Non-Commercial Use Only lnγr2 = i ⎤ ⎡0 ⎢ 2.971 ⋅ 10 −6 ⎥ ⎢ ⎥ −4 ⎢ 5.656 ⋅ 10 ⎥ ⎢ 0.003 ⎥ ⎢ 0.013 ⎥ ⎢ 0.067 ⎥ ⎢ ⎥ ⎢ 0.155 ⎥ ⎢ 0.227 ⎥ ⎢ 0.337 ⎥ ⎢ 0.479 ⎥ ⎢ 0.645 ⎥ ⎢ 0.761 ⎥ ⎢ ⎥ ⎣⋮ ⎦ γ1 = i ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎥ 7.122 ⎥ 5.193 ⎥ 2.774 ⎥ 1.878 ⎥ 1.585 ⎥ ⎥ 1.349 ⎥ 1.192 ⎥ 1.096 ⎥ 1.056 ⎥ ⎥⎦ ⋮ γ2 = i Psat1 ≔ 26.699899 ⋅ bar ⎢ ⎥ ⎢ 1.008 ⎥ ⎢ 1.032 ⎥ ⎢ 1.158 ⎥ ⎢ 1.359 ⎥ ⎢ 1.524 ⎥ ⎢ ⎥ ⎢ 1.789 ⎥ ⎢ 2.162 ⎥ ⎢ 2.65 ⎥ ⎢ 3.04 ⎥ ⎢⎣ ⋮ ⎥⎦ Psat2 ≔ 15.552476 ⋅ bar Pcal200 ≔ x1exp200 ⋅ γ1 ⋅ Psat1 + x2exp200 ⋅ γ2 ⋅ Psat2 i i i i i x1exp200 ⋅ γ1 ⋅ Psat1 i i y1cal200 ≔ ―――――― i Pcal200 i y1cal200 = i ⎤ ⎡0 ⎢ 0.022 ⎥ ⎢ ⎥ 0.219 ⎢ ⎥ ⎢ 0.364 ⎥ ⎢ 0.467 ⎥ ⎢ 0.546 ⎥ ⎢ 0.574 ⎥ ⎢ 0.59 ⎥ ⎢ ⎥ ⎢ 0.614 ⎥ ⎢ 0.646 ⎥ ⎢ 0.69 ⎥ ⎢ 0.726 ⎥ ⎢⎣ ⋮ ⎥⎦ Pcal200 = ? bar i Non-Commercial Use Only rms ≔ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ 2 ∑ ⎛Pexp200 − Pcal200 ⎞ i i⎠ i ⎝ rms = ? bar 10 8 6 Non-Commercial Use Only 4 2 Pexp200 i ――― bar 0 Pexp200 i ――― bar -2 -4 Pcal200 i ――― bar -6 Pcal200 i ――― bar -8 -10 -10 -8 -6 -4 -2 0 x1exp200 i y1exp200 i x1exp200 i y1cal200 i x1exp25 = i ⎤ ⎡0 ⎢ 1 ⋅ 10 −4 ⎥ ⎢ ⎥ ⎢ 0.019 ⎥ ⎢ 0.029 ⎥ ⎢ 0.045 ⎥ ⎢ 0.056 ⎥ ⎢ 0.094 ⎥ ⎢ ⎥ ⎢ 0.095 ⎥ ⎢ 0.131 ⎥ ⎢ 0.147 ⎥ ⎢ 0.179 ⎥ ⎢ 0.265 ⎥ ⎢ ⎥ ⎣⋮ ⎦ ⎡0 ⎤ ⎢ 0.011 ⎥ ⎢ ⎥ 0.646 ⎢ ⎥ 0 714 Non-Commercial Use Only 2 4 6 8 10 y1cal25 = i x1exp100 = i i i Pcal25 = ? bar i ⎤ ⎡0 ⎢ 0.003 ⎥ ⎢ ⎥ 0.004 ⎢ ⎥ ⎢ 0.005 ⎥ ⎢ 0.008 ⎥ ⎢ 0.048 ⎥ ⎢ 0.082 ⎥ ⎢ 0.108 ⎥ ⎢ ⎥ ⎢ 0.22 ⎥ ⎢ 0.308 ⎥ ⎢ 0.316 ⎥ ⎢ 0.48 ⎥ ⎢⎣ ⋮ ⎥⎦ y1cal100 = x1exp200 = 0.646 ⎢ ⎥ ⎢ 0.714 ⎥ ⎢ 0.773 ⎥ ⎢ 0.796 ⎥ ⎢ 0.836 ⎥ ⎢ 0.836 ⎥ ⎢ ⎥ ⎢ 0.852 ⎥ ⎢ 0.857 ⎥ ⎢ 0.863 ⎥ ⎢ 0.874 ⎥ ⎢⎣ ⋮ ⎥⎦ ⎤ ⎡0 ⎢ 0.115 ⎥ ⎢ ⎥ 0.136 ⎢ ⎥ ⎢ 0.149 ⎥ ⎢ 0.233 ⎥ ⎢ 0.571 ⎥ ⎢ 0.645 ⎥ ⎢ 0.674 ⎥ ⎢ ⎥ ⎢ 0.721 ⎥ ⎢ 0.736 ⎥ ⎢ 0.738 ⎥ ⎢ 0.764 ⎥ ⎢⎣ ⋮ ⎥⎦ Pcal100 = ? bar i ⎡0 ⎤ ⎢ 0.001 ⎥ ⎢ ⎥ 0.018 ⎢ ⎥ ⎢ 0.045 ⎥ ⎢ 0.092 ⎥ ⎢ 0.226 ⎥ ⎢ 0.362 ⎥ ⎢ 0.446 ⎥ ⎢ ⎥ Non-Commercial Use Only ⎢ 0.551 ⎥ ⎢ 0.659 ⎥ ⎢ 0.758 ⎥ ⎢ 0.816 ⎥ ⎢⎣ ⋮ ⎥⎦ y1cal200 = i ⎤ ⎡0 ⎢ 0.022 ⎥ ⎢ ⎥ 0.219 ⎢ ⎥ ⎢ 0.364 ⎥ ⎢ 0.467 ⎥ ⎢ 0.546 ⎥ ⎢ 0.574 ⎥ ⎢ 0.59 ⎥ ⎢ ⎥ ⎢ 0.614 ⎥ ⎢ 0.646 ⎥ ⎢ 0.69 ⎥ ⎢ 0.726 ⎥ ⎢⎣ ⋮ ⎥⎦ Pcal200 = ? bar Pcal ≔ augment (Pcal25 , Pcal100 , Pcal200) Pcal = ? bar Non-Commercial Use Only i x ≔ augment (x1exp25 , x1exp100 , x1exp200) y ≔ augment (y1cal25 , y1cal100 , y1cal200) i ≔ 0 ‥ 16 j≔0‥2 ⎡ 25 + 273 ⎤ z ≔ ⎢ 100 + 273 ⎥ ⎢ ⎥ ⎣ 200 + 273 ⎦ T ≔z i,j j ⎡ Pcal ⎤ Non-Commercial Use Only ⎢ ⎥ ⎢ bar ⎥ ⎢ x ⎥ ⎣ T ⎦ ⎡ Pcal ⎤ ⎢ ―― ⎥ ⎢ bar ⎥ ⎢ y ⎥ ⎣ T ⎦ Conclusions 1) This metod is more accurate when compared to the other methods available.This can be seen by comparing the "root mean square" values of different methods with this method at same temperature. 2) This method is most accurate at low temperatures. 3) This method doesn't require the knowledge of experimental values of x (liquid phase composition) and y (gas phase composition) to plot phase equilibrium plot. We can select our own x values and find corresponding y values to construct phase equilibrium plot. The only values needed are the saturation pressures of the components which can be estimated from Reidel corresponding states method. 4) This method doesn't require the knowledge of critical temperature and critical pressure values. 5) This method just requires the knowledge of structure of the compound to plot the phase diagrams of the compounds.Based on the structure, the compound is divided into subgroups and calculations are performed. Non-Commercial Use Only
© Copyright 2026 Paperzz