(1) From memory, fill in the degree and radian measures on each unit circle. PRACTICE DEGREES RADIANS Find each exact value without using a calculator. PRACTICE (4) sin 2π 3 ______ (2) cos(225) ______ (3) sin(150) ______ (6) sin(315) ______ (7) sin (10) cos(180) ______ (11) sin 7π 4 ______ (12) cos 5π 3 (15) cos π 6 ______ (16) cos π 2 (19) cos 7π 2 (14) sin π 3 ______ (18) sin(600) ______ PRACTICE 7π 6 ______ ______ (8) cos(330) ______ ______ ______ (20) sin(6π) ______ (5) cos 3π 4 ______ (9) sin 3π 2 ______ (13) sin(225) ______ (17) cos(2π) ______ (21) cos − 13π 4 ______ Solve for θ such that 0 ≤ θ < 360 and 0 ≤ 𝜃 < 2𝜋. (22) cos(θ) = √3 2 θ=__________ DEGREES =__________ RADIANS (26) sin(θ) = √2 2 θ=__________ DEGREES =__________ RADIANS 1 (23) sin(θ) =— 2 θ=__________ DEGREES =__________ RADIANS (27) sin(θ) =0 θ=__________ DEGREES =__________ RADIANS (24) cos(θ) =0 θ=__________ DEGREES =__________ RADIANS (28) sin(θ) =—1 θ=__________ DEGREES =__________ RADIANS (25) cos(θ) = √2 2 θ=__________ DEGREES =__________ RADIANS 1 (29) cos(θ) =— 2 θ=__________ DEGREES =__________ RADIANS PRACTICE Determine the value of each expression. (30) [sin(30°)] + [cos(30°)] (32) [cos(4𝜋)] + [sin(4𝜋)] __________ __________ (31) sin + cos (33) [sin 𝜃] + [cos 𝜃] __________ __________ PRACTICE (34) Select a point on the unit circle below. State the coordinates of the point you selected. Then use the coordinates to verify that sin 𝜃 + cos 𝜃 = 1. ANGLE SELECTED: ___________ VERIFICATION: COORDINATES: __________________ PRACTICE (35) Using the triangle provided, prove that sin 𝜃 + cos 𝜃 = 1. c a Θ b VARIATIONS ON THE PYTHAGOREAN IDENTITY sin 𝜃 = cos 𝜃 = PRACTICE (36) Use the Pythagorean identity to prove that (sin 𝜃 + cos 𝜃) = 2 sin 𝜃 cos 𝜃 + 1. PRACTICE (37) Use a variation of the Pythagorean identity to prove that sin 𝜃 − sin 𝜃 cos 𝜃 = sin 𝜃. REVIEW (38) π 3 REVIEW Convert the following radians to degrees. = ______° (39) 3π 4 = ______° (40) 5π 3 (41) 2π = ______° = ______° Convert the following degrees to radians. (42) 225°=______ (43) 300°=______ (44) 90°=______ (45) 150°=______ REVIEW Consider each expression. Write the letter of each expression in the blanks to satisfy the inequality statement provided at right. (46) A B C D E cos(180) sin(360) cos(120) cos(330) sin(45) A B C D E sin(90) cos(135) cos(210) sin(30) sin(120) (47) REVIEW √ (52) Which value is equivalent to cos( 4π 3 5π 3 b) cos( ) √ , − √ (51) 2π ) 3 − √ , Θ=_______ ? π 3 c) cos( ) d) sin( 11π ) 6 π (53) Which value is not equivalent to sin( 4 ) ? π 4 3π 4 a) cos( ) REVIEW − Θ=_______ Θ=_______ a) sin( ) REVIEW (50) (49) (0 , −1) Θ=_______ REVIEW _____ < _____ < _____ < _____ < _____ Consider each point on the unit circle. Determine the value of each angle. − , (48) _____ < _____ < _____ < _____ < _____ b) sin( ) c) cos(315) d) sin(225) Use special right triangles to find the lengths of the missing sides. (54) x=_______ y=_______ 22 y 30° x (55) x=_______ y y=_______ 60° x (56) x=_______ y=_______ 16√3 y x 45° 6
© Copyright 2026 Paperzz