(1) From memory, fill in the degree and radian measures on each

(1) From memory, fill in the degree and radian measures on each unit circle.
PRACTICE
DEGREES
RADIANS
Find each exact value without using a calculator.
PRACTICE
(4) sin
2π
3
______
(2) cos(225) ______
(3) sin(150) ______
(6) sin(315) ______
(7) sin
(10) cos(180) ______
(11) sin
7π
4
______
(12) cos
5π
3
(15) cos
π
6
______
(16) cos
π
2
(19) cos
7π
2
(14) sin
π
3
______
(18) sin(600) ______
PRACTICE
7π
6
______
______
(8) cos(330) ______
______
______
(20) sin(6π) ______
(5) cos
3π
4
______
(9) sin
3π
2
______
(13) sin(225) ______
(17) cos(2π) ______
(21) cos −
13π
4
______
Solve for θ such that 0 ≤ θ < 360 and 0 ≤ 𝜃 < 2𝜋.
(22) cos(θ) =
√3
2
θ=__________
DEGREES
=__________
RADIANS
(26) sin(θ) =
√2
2
θ=__________
DEGREES
=__________
RADIANS
1
(23) sin(θ) =— 2
θ=__________
DEGREES
=__________
RADIANS
(27) sin(θ) =0
θ=__________
DEGREES
=__________
RADIANS
(24) cos(θ) =0
θ=__________
DEGREES
=__________
RADIANS
(28) sin(θ) =—1
θ=__________
DEGREES
=__________
RADIANS
(25) cos(θ) =
√2
2
θ=__________
DEGREES
=__________
RADIANS
1
(29) cos(θ) =— 2
θ=__________
DEGREES
=__________
RADIANS
PRACTICE
Determine the value of each expression.
(30) [sin(30°)] + [cos(30°)]
(32) [cos(4𝜋)] + [sin(4𝜋)]
__________
__________
(31) sin
+ cos
(33) [sin 𝜃] + [cos 𝜃]
__________
__________
PRACTICE
(34) Select a point on the unit circle below. State the coordinates of the point you
selected. Then use the coordinates to verify that sin 𝜃 + cos 𝜃 = 1.
ANGLE
SELECTED: ___________
VERIFICATION:
COORDINATES: __________________
PRACTICE
(35) Using the triangle provided, prove that sin 𝜃 + cos 𝜃 = 1.
c
a
Θ
b
VARIATIONS ON THE
PYTHAGOREAN IDENTITY
sin 𝜃 =
cos 𝜃 =
PRACTICE
(36) Use the Pythagorean identity to prove that (sin 𝜃 + cos 𝜃) = 2 sin 𝜃 cos 𝜃 + 1.
PRACTICE
(37) Use a variation of the Pythagorean identity to prove that sin 𝜃 − sin 𝜃 cos 𝜃 = sin 𝜃.
REVIEW
(38)
π
3
REVIEW
Convert the following radians to degrees.
= ______°
(39)
3π
4
= ______°
(40)
5π
3
(41) 2π = ______°
= ______°
Convert the following degrees to radians.
(42) 225°=______
(43) 300°=______
(44) 90°=______
(45) 150°=______
REVIEW
Consider each expression. Write the letter of each expression in the blanks to satisfy the
inequality statement provided at right.
(46)
A
B
C
D
E
cos(180)
sin(360)
cos(120)
cos(330)
sin(45)
A
B
C
D
E
sin(90)
cos(135)
cos(210)
sin(30)
sin(120)
(47)
REVIEW
√
(52) Which value is equivalent to cos(
4π
3
5π
3
b) cos( )
√
, −
√
(51)
2π
)
3
−
√
,
Θ=_______
?
π
3
c) cos( )
d) sin(
11π
)
6
π
(53) Which value is not equivalent to sin( 4 ) ?
π
4
3π
4
a) cos( )
REVIEW
−
Θ=_______
Θ=_______
a) sin( )
REVIEW
(50)
(49) (0 , −1)
Θ=_______
REVIEW
_____ < _____ < _____ < _____ < _____
Consider each point on the unit circle. Determine the value of each angle.
− ,
(48)
_____ < _____ < _____ < _____ < _____
b) sin( )
c) cos(315)
d) sin(225)
Use special right triangles to find the lengths of the missing sides.
(54) x=_______
y=_______
22
y
30°
x
(55) x=_______
y
y=_______
60° x
(56) x=_______
y=_______
16√3
y
x
45°
6