EXAMPLE 1 : Find the derivative of f (x) = 7x – 4 from first principals

MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 1 of 9
EXAMPLE 1 : Find the derivative of f (x) = 7x – 4 from first principals.
Remember: The derivative of the function determines the slope of the tangent.
The graph of f (x) = 7x – 4 is a line. The slope of this line is 7 at any point.
The derivative is the
𝒇(𝒙 + 𝒉) βˆ’ 𝒇(𝒙)
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
π₯𝐒𝐦
f β€² (x) =
[πŸ•(𝒙 + 𝒉) βˆ’ πŸ’] βˆ’ (πŸ•π’™ βˆ’ πŸ’)
π₯𝐒𝐦
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦 πŸ•
πŸ•π’™ + πŸ•π’‰ βˆ’ πŸ’ βˆ’ πŸ•π’™ + πŸ’
π’‰β†’πŸŽ
𝒉
πŸ•π’‰
π’‰β†’πŸŽ 𝒉
π’‰β†’πŸŽ
f β€² (x) = 7
EXAMPLE 2a
Find the first derivative
𝑑𝑦
𝑑π‘₯
of the function y = x2 – 6x – 1 using first principles.
[(𝒙 + 𝒉)𝟐 βˆ’ πŸ”(𝒙 + 𝒉) βˆ’ 𝟏] βˆ’ (π’™πŸ βˆ’ πŸ”π’™ βˆ’ 𝟏)
π’…π’š
= π₯𝐒𝐦
(𝒙 + 𝒉) βˆ’ 𝒙
𝒅𝒙 π’‰β†’πŸŽ
π’…π’š
π’™πŸ + πŸπ’™π’‰ + π’‰πŸ βˆ’ πŸ”π’™ βˆ’ πŸ”π’‰ βˆ’ 𝟏 βˆ’ π’™πŸ + πŸ”π’™ + 𝟏
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
πŸπ’™π’‰ + π’‰πŸ βˆ’ πŸ”π’‰
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
= π₯𝐒𝐦 πŸπ’™ + 𝒉 βˆ’ πŸ”
𝒅𝒙 π’‰β†’πŸŽ
π’…π’š
= πŸπ’™ βˆ’ πŸ”
𝒅𝒙
U2 L1 Derivatives ANSWERS
f β€² (x) =
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 2 of 9
EXAMPLE 2b
Find the equation of the line tangent to y = x2 – 6x – 1 at (– 1 ,6)
π’…π’š
= πŸπ’™ βˆ’ πŸ”
𝒅𝒙
π’…π’š
= 𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 π’•π’‚π’π’ˆπ’†π’π’• = 𝟐(βˆ’πŸ) βˆ’ πŸ” = βˆ’πŸ–
𝒅𝒙
𝑏 = βˆ’2
π’š = βˆ’πŸ–π’™ βˆ’ 𝟐
EXAMPLE 2c
𝟏
Find the equation of the line tangent to y = x2 – 6x – 1 and perpendicular to π’š = βˆ’ 𝟐 𝒙 + πŸ“
𝟏
Slope of perpendicular line to π’š = βˆ’ 𝟐 𝒙 + πŸ“ 𝐒𝐬 𝟐
π’…π’š
= πŸπ’™ βˆ’ πŸ”
𝒅𝒙
πŸπ’™ βˆ’ πŸ” = 𝟐
πŸπ’™ = πŸ–
𝒙=πŸ’
π’š = πŸ’πŸ βˆ’ πŸ”(πŸ’) βˆ’ 𝟏 = βˆ’πŸ—
βˆ’πŸ— = 𝟐(πŸ’) + 𝒃
𝒃 = βˆ’πŸπŸ•
U2 L1 Derivatives ANSWERS
𝟏
π’š=βˆ’ 𝒙+πŸ“
𝟐
π’š = πŸπ’™ βˆ’ πŸπŸ•
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
EXAMPLE 3:
Find f β€² (x) if
𝑓(π‘₯) =
f β€² (x) =
Page 3 of 9
7
2 βˆ’ 3π‘₯
πŸ•
πŸ•
βˆ’
𝟐 βˆ’ πŸ‘(𝒙 + 𝒉) 𝟐 βˆ’ πŸ‘π’™
π₯𝐒𝐦
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
f β€² (x) =
f β€² (x) =
πŸ•
πŸ•
βˆ’
𝟐 βˆ’ πŸ‘(𝒙 + 𝒉) 𝟐 βˆ’ πŸ‘π’™
π₯𝐒𝐦
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
πŸ•(𝟐 βˆ’ πŸ‘π’™) βˆ’ πŸ•[𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)]
π’‰β†’πŸŽ
𝒉[𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)](𝟐 βˆ’ πŸ‘π’™)
π₯𝐒𝐦
πŸπŸ’ βˆ’ πŸπŸπ’™ βˆ’ πŸπŸ’ + πŸπŸπ’™ + πŸπŸπ’‰
π’‰β†’πŸŽ
𝒉[𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)](𝟐 βˆ’ πŸ‘π’™)
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
f β€² (x) =
πŸπŸπ’‰
π’‰β†’πŸŽ 𝒉[𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)](𝟐 βˆ’ πŸ‘π’™)
𝟐𝟏
π’‰β†’πŸŽ [𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)](𝟐 βˆ’ πŸ‘π’™)
π₯𝐒𝐦
𝟐𝟏 𝟐𝟏
π₯𝐒𝐦
[𝟐 βˆ’ πŸ‘(𝒙 + 𝒉)](𝟐 βˆ’ πŸ‘π’™)
f β€² (x) = π’‰β†’πŸŽ
[𝟐 βˆ’
πŸ‘(𝒙 + 𝟎)](𝟐 βˆ’ πŸ‘π’™)
f β€² (x) =
U2 L1 Derivatives ANSWERS
𝟐𝟏
(𝟐 βˆ’ πŸ‘π’™)𝟐
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
EXAMPLE 4:
Find f β€² (x ) of
f β€² (x) =
Page 4 of 9
𝑓(π‘₯) = √π‘₯ + 3
using the limit process
βˆšπ’™ + 𝒉 + πŸ‘ βˆ’ βˆšπ’™ + πŸ‘
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
π₯𝐒𝐦
βˆšπ’™ + 𝒉 + πŸ‘ βˆ’ βˆšπ’™ + πŸ‘ βˆšπ’™ + 𝒉 + πŸ‘ + βˆšπ’™ + πŸ‘
×
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
βˆšπ’™ + 𝒉 + πŸ‘ + βˆšπ’™ + πŸ‘
f β€² (x) = π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦
f β€² (x) =
f β€² (x) =
𝒙 + 𝒉 + πŸ‘ βˆ’ (𝒙 + πŸ‘)
π’‰β†’πŸŽ 𝒉(βˆšπ’™ +
𝒉 + πŸ‘ + βˆšπ’™ + πŸ‘)
𝒙+𝒉+πŸ‘βˆ’π’™βˆ’πŸ‘
π’‰β†’πŸŽ 𝒉(βˆšπ’™ +
𝒉 + πŸ‘ + βˆšπ’™ + πŸ‘)
𝒉
π₯𝐒𝐦
π’‰β†’πŸŽ 𝒉(βˆšπ’™ +
𝒉 + πŸ‘ + βˆšπ’™ + πŸ‘)
𝟏
(βˆšπ’™ + πŸ‘ + βˆšπ’™ + πŸ‘)
=
𝟏
𝟐√ 𝒙 + πŸ‘
Find the equation of the line tangent to 𝑓(π‘₯) = √π‘₯ + 3
𝟏
𝟏
=
f β€² (1) =
𝟐√ 𝟏 + πŸ‘ πŸ’
π’Ž=
U2 L1 Derivatives ANSWERS
𝟏
πŸ’
𝑷(𝟏, 𝟐)
𝟐=
𝟏
(𝟏) + 𝒃
πŸ’
𝒃=
πŸ•
πŸ’
π’š=
𝟏
πŸ•
𝒙+
πŸ’
πŸ’
at (1, 2)
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 5 of 9
EXAMPLE 5:
Find equation of the line tangent to 𝑓(π‘₯) = √π‘₯ βˆ’ 1 and parallel to 𝑦 = 2π‘₯ βˆ’ 7
f β€² (x) = π₯𝐒𝐦 βˆšπ’™
π’‰β†’πŸŽ
+ 𝒉 βˆ’ 𝟏 βˆ’ βˆšπ’™ βˆ’ 𝟏
(𝒙 + 𝒉) βˆ’ 𝒙
βˆšπ’™ + 𝒉 βˆ’ 𝟏 βˆ’ βˆšπ’™ βˆ’ 𝟏 βˆšπ’™ + 𝒉 βˆ’ 𝟏 + βˆšπ’™ βˆ’ 𝟏
×
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
βˆšπ’™ + 𝒉 βˆ’ 𝟏 + βˆšπ’™ βˆ’ 𝟏
f β€² (x) = π₯𝐒𝐦
f β€² (x) =
π₯𝐒𝐦
𝒙 + 𝒉 βˆ’ 𝟏 βˆ’ (𝒙 βˆ’ 𝟏)
π’‰β†’πŸŽ 𝒉(βˆšπ’™ +
f β€² (x) =
𝒇′ (𝒙) =
𝒉 βˆ’ 𝟏 + βˆšπ’™ βˆ’ 𝟏)
𝒉
π₯𝐒𝐦
π’‰β†’πŸŽ 𝒉(βˆšπ’™
+ 𝒉 βˆ’ 𝟏 + βˆšπ’™ βˆ’ 𝟏)
𝟏
(βˆšπ’™ + 𝟎 βˆ’ 𝟏 + βˆšπ’™ βˆ’ 𝟏)
=
𝟏
πŸβˆšπ’™ βˆ’ 𝟏
A line parallel to 𝑦 = 𝟐π‘₯ + 7 will have a slope of 2
𝟐=
𝟏
πŸβˆšπ’™ βˆ’ 𝟏
πŸ’βˆšπ’™ βˆ’ 𝟏 = 𝟏
𝟏
βˆšπ’™ βˆ’ 𝟏 =
πŸ’
π’™βˆ’πŸ=
𝒙=
𝟏
πŸπŸ”
πŸπŸ•
πŸπŸ”
πŸπŸ•
πŸπŸ•
𝟏
𝟏
𝑓( ) = √ βˆ’πŸ = √ =
πŸπŸ”
πŸπŸ”
πŸπŸ” πŸ’
U2 L1 Derivatives ANSWERS
𝟏
πŸπŸ•
= (𝟐)
+𝒃
πŸ’
πŸπŸ”
𝒃=
βˆ’πŸπŸ“
πŸ–
π’š = πŸπ’™ βˆ’
πŸπŸ“
πŸ–
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
QUESTIONS
Page 6 of 9
Use first principles to find the derivative of the following function.
1. f(x) = 4x2 – 7
[πŸ’(𝒙 + 𝒉)𝟐 βˆ’ πŸ•] βˆ’ (πŸ’π’™πŸ βˆ’ πŸ•)
π’…π’š
= π₯𝐒𝐦
(𝒙 + 𝒉) βˆ’ 𝒙
𝒅𝒙 π’‰β†’πŸŽ
π’…π’š
[πŸ’(π’™πŸ + πŸπ’™π’‰ + π’‰πŸ ) βˆ’ πŸ•] βˆ’ πŸ’π’™πŸ + πŸ•
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
πŸ’π’™πŸ + πŸ–π’™π’‰ + πŸ’π’‰πŸ βˆ’ πŸ• βˆ’ πŸ’π’™πŸ + πŸ•
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
πŸ’π’™πŸ + πŸ–π’™π’‰ + πŸ’π’‰πŸ βˆ’ πŸ• βˆ’ πŸ’π’™πŸ + πŸ•
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
πŸ–π’™π’‰ + πŸ’π’‰πŸ
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
πŸ–π’™π’‰ + πŸ’π’‰πŸ
= π₯𝐒𝐦
𝒅𝒙 π’‰β†’πŸŽ
𝒉
π’…π’š
= π₯𝐒𝐦 πŸ–π’™ + πŸ’π’‰
𝒅𝒙 π’‰β†’πŸŽ
π’…π’š
= πŸ–π’™
𝒅𝒙
Find the slope of the tangent at (1, – 3) and then write the equation for the tangent.
π’…π’š
= πŸ–π’™ = πŸ–(𝟏) = πŸ–
𝒅𝒙
βˆ’πŸ‘ = πŸ–(𝟏) + 𝒃
𝒃 = βˆ’πŸπŸ
π’š = πŸ–π’™ βˆ’ 𝟏𝟏
U2 L1 Derivatives ANSWERS
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 7 of 9
2. Find the derivative f β€² (x) from first principals
𝑓(π‘₯) =
π‘₯+2
π‘₯
𝒙+𝒉+𝟐 𝒙+𝟐
βˆ’ 𝒙
𝒇′ (𝒙) = π₯𝐒𝐦 𝒙 + 𝒉
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
𝒙(𝒙 + 𝒉 + 𝟐) βˆ’ (𝒙 + 𝟐)(𝒙 + 𝒉)
π’‰β†’πŸŽ
𝒉𝒙(𝒙 + 𝒉)
𝒇′ (𝒙) = π₯𝐒𝐦
π’™πŸ + 𝒙𝒉 + πŸπ’™ βˆ’ π’™πŸ βˆ’ 𝒙𝒉 βˆ’ πŸπ’™ βˆ’ πŸπ’‰
π’‰β†’πŸŽ
𝒉𝒙(𝒙 + 𝒉)
𝒇′ (𝒙) = π₯𝐒𝐦
βˆ’πŸπ’‰
π’‰β†’πŸŽ 𝒉𝒙(𝒙 + 𝒉)
𝒇′ (𝒙) = π₯𝐒𝐦
βˆ’πŸ
π’‰β†’πŸŽ 𝒙(𝒙 + 𝒉)
𝒇′ (𝒙) =
𝒇′ (𝒙) = π₯𝐒𝐦
βˆ’πŸ
π’™πŸ
Find the slope of the tangent at the specified point, and then write the equation for the
tangent.
3.
𝑓(π‘₯) =
π‘₯+2
π‘₯
𝒇′ (𝒙) =
at (3,
βˆ’πŸ βˆ’πŸ
=
π’™πŸ
πŸ—
πŸ“ βˆ’πŸ
(πŸ‘) + 𝒃
=
πŸ‘
πŸ—
πŸ“ βˆ’πŸ
=
+𝒃
πŸ‘
πŸ‘
𝒃=
πŸ•
πŸ‘
𝟐
πŸ•
π’š=βˆ’ 𝒙+
πŸ—
πŸ‘
U2 L1 Derivatives ANSWERS
5
)
3
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 8 of 9
4. Find 𝑓 β€² (π‘₯ ) of 𝑓(π‘₯) = √3π‘₯ + 1 using the limit process (first principles)
βˆšπŸ‘(𝒙 + 𝒉) + 𝟏 βˆ’ βˆšπŸ‘π’™ + 𝟏
f β€² (x) = π₯𝐒𝐦
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
f β€² (x) =
f β€² (x) =
f β€² (x) =
f β€² (x) =
βˆšπŸ‘π’™ + πŸ‘π’‰ + 𝟏 βˆ’ βˆšπŸ‘π’™ + 𝟏 βˆšπŸ‘π’™ + πŸ‘π’‰ + 𝟏 + βˆšπŸ‘π’™ + 𝟏
×
π’‰β†’πŸŽ
𝒉
βˆšπŸ‘π’™ + πŸ‘π’‰ + 𝟏 + βˆšπŸ‘π’™ + 𝟏
π₯𝐒𝐦
(πŸ‘π’™ + πŸ‘π’‰ + 𝟏) βˆ’ (πŸ‘π’™ + 𝟏)
π₯𝐒𝐦
π’‰β†’πŸŽ 𝒉(βˆšπŸ‘π’™ +
πŸ‘π’‰ + 𝟏 + βˆšπŸ‘π’™ + 𝟏
)
πŸ‘π’‰
π₯𝐒𝐦
π’‰β†’πŸŽ 𝒉(βˆšπŸ‘π’™ +
π₯𝐒𝐦
πŸ‘π’‰ + 𝟏 + βˆšπŸ‘π’™ + 𝟏)
πŸ‘
π’‰β†’πŸŽ βˆšπŸ‘π’™
+ πŸ‘π’‰ + 𝟏 + βˆšπŸ‘π’™ + 𝟏
𝒇′ (𝒙) =
πŸ‘
πŸβˆšπŸ‘π’™ + 𝟏
Find the equation of the line tangent to 𝑓(π‘₯) = √3π‘₯ + 1 at (5, 4)
𝒇′ (𝒙) =
πŸ‘
πŸβˆšπŸ‘π’™ + 𝟏
πŸ‘
πŸ’ = (πŸ“) + 𝒃
πŸ–
πŸ’=
=
πŸπŸ“
+𝒃
πŸ–
πŸπŸ•
πŸ–
πŸ‘
πŸπŸ•
π’š = 𝒙+
πŸ–
πŸ–
𝒃=
U2 L1 Derivatives ANSWERS
πŸ‘
πŸβˆšπŸ‘(πŸ“) + 𝟏
=
πŸ‘
πŸ–
MATH 31
UNIT 2 LESSON #1
DERIVATIVES FROM FIRST PRINCIPLES
NAME ANSWERS
Page 9 of 9
5
5. Find equation of the line tangent to 𝑓(π‘₯) = √5π‘₯ βˆ’ 7 parallel to 𝑦 = 2 π‘₯ βˆ’ 9
βˆšπŸ“(𝒙 + 𝒉) βˆ’ πŸ• βˆ’ βˆšπŸ“π’™ βˆ’ πŸ•
π’‰β†’πŸŽ
(𝒙 + 𝒉) βˆ’ 𝒙
f β€² (x) =
π₯𝐒𝐦
βˆšπŸ“π’™ + πŸ“π’‰ βˆ’ πŸ• βˆ’ βˆšπŸ“π’™ βˆ’ πŸ• βˆšπŸ“π’™ + πŸ“π’‰ βˆ’ πŸ• + βˆšπŸ“π’™ βˆ’ πŸ•
×
π’‰β†’πŸŽ
𝒉
βˆšπŸ“π’™ + πŸ“π’‰ βˆ’ πŸ• + βˆšπŸ“π’™ βˆ’ πŸ•
π₯𝐒𝐦
f β€² (x) =
(πŸ“π’™ + πŸ“π’‰ βˆ’ πŸ•) βˆ’ (πŸ“π’™ βˆ’ πŸ•)
π₯𝐒𝐦
f β€² (x) =
π’‰β†’πŸŽ 𝒉(βˆšπŸ“π’™ +
f β€² (x) =
πŸ“π’‰
π₯𝐒𝐦
π’‰β†’πŸŽ 𝒉(βˆšπŸ“π’™ +
f β€² (x) =
𝒇′ (𝒙) =
πŸ“π’‰ βˆ’ πŸ• + βˆšπŸ“π’™ βˆ’ πŸ•)
π₯𝐒𝐦
π’‰β†’πŸŽ βˆšπŸ“π’™
πŸ“π’‰ βˆ’ πŸ• + βˆšπŸ“π’™ βˆ’ πŸ•)
πŸ“
+ πŸ“π’‰ βˆ’ πŸ• + βˆšπŸ“π’™ βˆ’ πŸ•
πŸ“
πŸβˆšπŸ“π’™ βˆ’ πŸ•
πŸ“
πŸβˆšπŸ“π’™ βˆ’ πŸ•
=
πŸ“
𝟐
πŸ–
πŸ–
𝒇 ( ) = βˆšπŸ“ ( ) βˆ’ πŸ• = 𝟏
πŸ“
πŸ“
πŸπŸŽβˆšπŸ“π’™ βˆ’ πŸ• = 𝟏𝟎
𝟏=
βˆšπŸ“π’™ βˆ’ πŸ• = 𝟏
πŸ“ πŸ–
( )+𝒃
𝟐 πŸ“
𝟏=πŸ’+𝒃
πŸ“π’™ βˆ’ πŸ• = 𝟏
πŸ“π’™ = πŸ–
𝒙=
πŸ–
πŸ“
U2 L1 Derivatives ANSWERS
𝒃 = βˆ’πŸ‘
πŸ“
π’š = π’™βˆ’πŸ‘
𝟐