A2HCh0703 Solving Trigonometric Equations Homework and Reading Read p551– 557 (1) HW p558 #1– 43 odd (2) HW p559 #45 – 61odd 73, 74 Goal Solving Trigonometric Equations p1 Students use standard algebraic techniques to solve trigonometric equations, solve trigonometric equations of quadratic type, solve trigonometric equations involving multiple angles, and use inverse trigonometric functions to solve trigonometric equations. Solving Trigonometric Equations To solve a trigonometric equation, try to isolate the trigonometic function on one side, then find the solutions. Using a let statement can sometimes help with more complicated equations. Use know trigonometric values to find solutions. Solving Trigonometric Equations Example Solving Trigonometric Equations Solve sin x + 1 = ! sin x Example Solve 1 ! 2 cos x = 0 ! 3 1 ! 2 cos x = 0 isolate cos x ! 2 cos x = !1 subtract 1 1 cos x = divide ! 2, find x 2 " x = + 2" n 3 5" or + 2" n and cotermial 3 There are infinitely many solutions, use the period for the function. + 2" n 5! 3 Example Example Solve tan 2 x ! 3 = 0 tan 2 x ! 3 = 0 tan 2 x = 3 2! 3 ! 3 isolate tan x add 3 tan x = ± 3 take sqr root " x = + "n 3 2" or + " n and cotermial 3 There are infinitely many solutions, use the period for the function. + " n Equations of Quadratic Type Solve 2 cos x + cos x ! 1 = 0 on the interval [ 0, 2" ) 2u 2 + u ! 1 = 0 ( 2u ! 1) (u + 1) = 0 2u ! 1 = 0 u + 1 = 0 1 u = !1 u= 2 cos x = !1 1 cos x = 2 " 5" x = " x= , 3 3 sec x csc x = csc x sec x csc x ! csc x = 0 isolate sec x & csc x subtract csc x csc x ( sec x ! 1) = 0 factor csc x csc x = 0 sec x ! 1 = 0 sec x = 1 two solutions Undefined x = 2" n Solve 2 cos 2 ! + 3sin ! " 3 = 0 on the interval [ 0, 2# ) 2 let u = cos x Solve sec x csc x = csc x Example Equations of Quadratic Type Example sin x + 1 = ! sin x isolate sin x 2 sin x + 1 = 0 add sin x 7! 6 1 sin x = ! solve 2 7" x= + 2" n 6 11" or + 2" n and cotermial 6 There are infinitely many solutions, use the period for the function. + 2" n Use let statement u for cos x substitute u for cos x factor ( ) 2 1 " sin 2 ! + 3sin ! " 3 = 0 ( ) let u = sin ! 2 1 " u 2 + 3u " 3 = 0 2 " 2u 2 + 3u " 3 = 0 "2u 2 + 3u " 1 = 0 2u 2 " 3u + 1 = 0 ( 2u " 1) (u " 1) = 0 solve each factor, replace cos x 2u " 1 = 0 u "1= 0 1 u =1 u= sin ! = 1 2 1 sin ! = 2 # # 5# != != , 2 6 6 Use identities for cos ! 2 Use let statement u for sin ! substitute u for sin ! distribute Simplify factor a " 1 factor solve each factor, replace sin ! 11! 6 A2HCh0703 Solving Trigonometric Equations Examples & Try Solve sec x + 1 = tan x on the interval [ 0, 2! ) Example (sec x + 1) = tan x (sec x + 1)2 = sec 2 x " 1 2 2 let u = sec x (u + 1) 2 = u "1 u + 2u + 1 = u " 1 2u = "2 u = "1 sec x = "1 x=! 2 Functions Involving Multiple Angles square both sides use the identity Use let statement u for sec x 2 2 substitute u for sec x multiply Simplify simplify replace u with sec x solve Solve 2 sin 2 2x = 1 on the interval [ 0, 2! ) Solve sin 2! + 1 = 0 on the interval [ 0, 2" ) Wo2rk sin 2 2x = 1 7" !sin = 2!+ "=n # 11" isolate 12 ! =sin 2!+ " n 2 n 12 ! n 7" ! 7 " 11 " 7 " 0 +!"= 11 " 0 ( = ) 2 or solve 11" 12 0 + 6 712" 126 12 " ( 0 ) = 12 7" " 19 1 " 11" 11" 12" 23" 12 1 7"+ " (1) = 12 + 12 =11 + 12" 12 " (1) = 12 + 12 = 2!2= 7" + "+( 22" n7" 224 12 ) = + ! "== 31" + 22" n11" + 11 " 24" 35" 126 12 6 12 12 12 " ( 2 ) = 12 + 12 = 7" 12 11 " ! = 7" +19"" n != + " n 11" solve each ! =12 , 23" 12 != , 712" 12 19" 11" 23" 12 12 != , != , 12 12 12 12 Solutions : ! 7" 11" 19" 23" , , , 12 12 12 12 ! 4x = + ! n 4 ! !n x= + 16 4 ! 5! "= , ,... 16 16 Solutions : Using Inverse Functions ! 5! or 4 4 solve 5! + !n 4 5! ! n x= + 16 4 5! 9! "= , ,... 16 16 4x = ! 5! 9! 13! 17! 21! 25! 29! , , , , , , , 16 16 16 16 16 16 16 16 Using Inverse Functions Example Solve sec 2 x ! 3sec x ! 10 = 0 let u = sec x Use let statement u for sec x u 2 ! 3u ! 10 = 0 (u ! 5 )(u + 2 ) = 0 u!5=0 u=5 sec x = 5 substitute u for sec x factor u+2=0 u = !2 sec x = !2 x = sec !1 5 + 2" n x = sec !1 ( !2 ) + 2" n solve and replace u 1 2 isolate sin 2x 2 2 1 2 2 ! 3! 2x = or 4 4 sin 2x = ! 2x = + ! n 4 ! !n x= + 8 2 ! 5! 9! 13! "= , , , 8 8 8 8 Solutions : Try : Solve tan 4x = 1 on the interval [ 0, 2! ) 4x = Try : Solve 3cot x ! 1 = 0 1 2 cot 2 x = isolate cot x 3 1 cot x = ± sqr root 3 tan x = ± 3 use identity " x = + "n 3 2" or x = + "n 3 Example Functions Involving Multiple Angles Example ! p2 2 sqr root 0 ! 2! -1 solve -2 3! + !n 4 3! ! n x= + 8 2 3! 7! 11! 15! "= , , , 8 8 8 8 2x = period is ! since we had 2 sin 2x, no negatives. ! 3! 5! 7! 9! 11! 13! 15! , , , , , , , 8 8 8 8 8 8 8 8 Try : Solve sin 2 3x ! 2 sin x + 1 = 0 on the interval [ 0, 2" ) let u = sin x u 2 ! 2u + 1 = 0 (u ! 1) (u ! 1) = 0 u !1= 0 sin 3x ! 1 = 0 sin 3x = 1 " 3x = + 2" n 2 " 2" n x= + 6 3 " 5" 9" x= , , 6 6 6 Use let statement u for sin x substitute u for sin x factor replace u with sin x solve solve solve
© Copyright 2025 Paperzz