Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 7604748, 9 pages http://dx.doi.org/10.1155/2016/7604748 Research Article Preparation of Magnetic Nanoparticles via a Chemically Induced Transition: Presence/Absence of Magnetic Transition on the Treatment Solution Used Yanshuang Chen, Qin Chen, Hong Mao, Yueqiang Lin, and Jian Li School of Physical Science and Technology, Southwest University, Chongqing 400715, China Correspondence should be addressed to Jian Li; [email protected] Received 26 November 2015; Accepted 13 December 2015 Academic Editor: Joseฬ L. A. Mediano Copyright © 2016 Yanshuang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The dependence of magnetic transition on the treatment solution used in the preparation of magnetic nanoparticles was investigated using as-prepared products from paramagnetic FeOOH/Mg(OH)2 via a chemically induced transition. Treatment using FeCl3 and CuCl solutions led to a product that showed no magnetic transition, whereas the product after treatment with FeSO4 or FeCl2 solutions showed ferromagnetism. Experiments revealed that the magnetism was caused by the ferrimagnetic ๐พ-Fe2 O3 phase in the nanoparticles, which had a coating of ferric compound. This observation suggests that Fe2+ in the treatment solution underwent oxidation to Fe3+ , thereby inducing the magnetic transition. The magnetic nanoparticles prepared via treatment with an FeSO4 solution contained a larger amount of the nonmagnetic phase. This resulted in weaker magnetization even though these nanoparticles were larger than those prepared by treatment with an FeCl2 solution. The magnetic transition of the precursor (FeOOH/Mg(OH)2 ) was dependent upon treatment solutions and was essentially induced by the oxidation of Fe2+ and simultaneous dehydration of FeOOH phase. The transition was independent of the acid radical ions in the treatment solution, but the coating on the magnetic crystallites varied with changes in the acid radical ion. 1. Introduction Nanotechnology involves the understanding and control of matter with dimensions of roughly 1โ100 nm [1]. Magnetic nanoparticles have attracted increasing interest because their size range enables the investigation of the fundamental aspects of magnetic-ordering phenomena in materials with reduced dimensions, and this has the potential to lead to new technological applications [2, 3]. Studies on magnetic nanoparticles have focused on the development of simple and effective methods for the fabrication of nanoparticles with controlled size, morphology, and properties [4, 5]. Iron oxide nanoparticles including magnetite (Fe3 O4 ), hematite (๐ผ-Fe2 O3 ), maghemite (๐พ-Fe2 O3 ), goethite (๐ผ-FeOOH), and akaganeite (๐ฝ-FeOOH) nanoparticles have attracted enormous attention due to their interesting properties [6โ10]. Many methods have been developed for the preparation of ๐พ-Fe2 O3 magnetic nanoparticles, including coprecipitation [11], a gas-phase reaction technique [12], direct thermal decomposition [13], thermal decomposition-oxidation [14], sonochemical synthesis [15], a microemulsion technique [16], hydrothermal synthesis [17], a vaporization-condensation method [18], and a sol-gel approach [19]. Reactions for the synthesis of oxide nanoparticles using the coprecipitation method can be grouped into two categories. In the first category, the oxide is produced directly; in the second category, a precursor is produced initially and then subjected to further processing (drying, calcination, and subsequent steps) [20]. During the chemical reaction, which is followed by calcination or annealing, a new phase is formed. In addition to the transition from amorphous to crystalline, the particle size increases, and the crystallites aggregate as the calcination temperature increases [21]. The conventional aqueous synthesis of ๐พ-Fe2 O3 particles involves three or more steps [22], but we recently found a new route for the production of ๐พ-Fe2 O3 magnetic nanoparticles that requires 2 Journal of Chemistry only two steps. This method involves the preparation of the paramagnetic FeOOH/Mg(OH)2 precursor via a coprecipitation method, followed by treatment of the hydroxide precursor in the liquid phase using a ferrous chloride (FeCl2 ) solution [23]. During this treatment, Mg(OH)2 dissolves, and the paramagnetic FeOOH precursor transforms into ferrimagnetic ๐พ-Fe2 O3 nanoparticles via dehydration: Mg (OH)2 ๓ณจโ Mg2+ + 2OHโ 2FeOOH (paramagnetic) ๓ณจโ ๐พ-Fe2 O3 (ferrimagnetic) + H2 O (1) (2) This method is referred to as a chemically induced transition [24, 25]. However, it remains unclear whether such a magnetic transition can be produced using other solutions. In the present work, we used aqueous solutions of ferric chloride (FeCl3 ), cuprous chloride (CuCl), ferrous sulfate (FeSO4 ), and ferrous chloride (FeCl2 ) as treatment solutions to investigate the dependence of the magnetic transition on the treatment solution used and to attempt to explain the mechanism of the transition in the liquid phase. 2. Materials and Methods 2.1. Chemicals. FeCl3 , Mg(NO3 )2 , NaOH, CuCl, FeSO4 , and FeCl2 of analytical grade and all other chemicals were used as received without further purification. Distilled water was used throughout the experiments. 2.2. Preparation. The precursor was synthesized via coprecipitation. An aqueous mixture of FeCl3 (1 M, 40 mL) and Mg(NO3 )2 (2 M, with 0.05 mol HCl; 10 mL) was added to an aqueous NaOH solution (0.7 M, 500 mL). The resulting solution was then heated to boiling for 5 min under stirring. The red-brown precursor precipitated gradually during this process. The precursor was collected and washed with dilute HNO3 solution (0.01 M) until the pH of the supernatant liquid was 7-8. The as-prepared precursor was mixed with the treatment solution (0.25 M, 400 mL), and the resulting mixture was allowed to boil for 30 min. The products were then dehydrated with acetone and allowed to air-dry. Treatment with FeCl3 , CuCl, and FeSO4 solutions produced samples (1), (2), and (3), respectively. For comparison, treatment was also performed in an FeCl2 solution to produce sample (0). 2.3. Characterization. Crystal structures and specific magnetization curves were obtained for samples (0)โ(3) using X-ray diffraction (XRD; XRD-7000, Shimadzu, Japan) and vibrating-sample magnetometry (VSM; HH-15, Nju-yq, China) at room temperature, respectively. The bulk chemical species, surface chemical composition, and morphology of samples (0) and (3) were determined using energy-dispersive X-ray spectroscopy (EDS; Quanta-200, Genesis, USA), X-ray photoelectron spectroscopy (XPS; XSAM800, Krator, UK), and transmission electron microscopy (TEM; Tecnai G20 ST, FEI, USA), respectively. Table 1: Atomic percentages (๐๐ ) determined from EDS measurements performed on samples (0) and (3). Sample (0) Sample (3) ๐O 60.48 62.35 ๐Fe 37.93 32.35 ๐Cl 1.59 ๐S ๐Mg 3.93 1.37 3. Results and Discussion 3.1. Results. XRD spectra are shown in Figure 1 for all of the samples. The crystal structure of samples (1) and (2) was different from that of sample (0), whereas the main structure of sample (3) was identical to that of sample (0), which corresponded to ferrite-like ๐พ-Fe2 O3 . The results showed that sample (3) contained MgSO4 โ 5H2 O and Fe2 (SO4 )3 โ 11H2 O. The crystal phase of samples (1) and (2) is difficult to be distinguished from the XRD spectra, but it can be determined that both did not contain ferrite-like phase. Specific magnetization curves measured at room temperature are shown for all samples in Figure 2. The curves for samples (1) and (2) exhibited similar, apparently paramagnetic, behavior. Similar to sample (0), sample (3) appeared to be ferromagnetic having coercivity (see the windows in Figure 2), but its magnetization was weaker than that of sample (0). According to the XRD and VSM results, samples (1) and (2) showed no magnetic transition; in contrast, sample (3) exhibited a transition similar to that shown by sample (0). The specific saturation magnetization values (๐๐ ) for samples (0) and (3) were determined from a plot of ๐ versus 1/๐ป (where ๐ป is the strength of magnetic field) in the high-field region, which was linear for strong magnetic fields [26]. ๐ versus 1/๐ป (๐ป โฅ 7.5 kOe) plots were represented as inserts of Figure 2, and the ๐๐ values were determined by extrapolating plots to ๐-axis to be 59.20 and 43.36 emu/g for samples (0) and (3), respectively. Figure 3 shows EDS spectra for samples (0) and (3). Sample (0) contained Fe, O, and Cl, and sample (3) contained S and Mg, in addition to Fe and O. The quantitative results are listed in Table 1. XPS measurements revealed the same chemical species that were identified by the EDS analysis in samples (0) and (3). The XPS spectra are shown in Figure 4. The XRD and EDS results suggested that the ๐พFe2 O3 phase was dominant in samples (0) and (3). There was also a Cl-containing phase in sample (0), and two Scontaining phases in sample (3). It is possible that the Clcontaining phase in sample (0) was FeCl3 โ 6H2 O [25], but that the content of FeCl3 โ 6H2 O may be so low that it did not produce clear diffraction peaks in the XRD spectrum (see Figure 1). The XRD results also implied that the Scontaining phases in sample (3) were MgSO4 โ 5H2 O and Fe2 (SO4 )3 โ 11H2 O. Accordingly, the Fe2p3/2 lines and O1s lines observed for the two samples and the S2p3/2 line observed for sample (3) may be associated with two or more species. Detailed data on binding energies are listed in Table 2. We deduced from the experimental results that the binding energy of Mg1s in MgSO4 โ 5H2 O was approximately 1304.9 eV. In addition, it is noticed that the ferrite-like spinel structure, ๐พ-Fe2 O3 and Fe3 O4 , is difficult to discriminate by XRD 3 20 30 40 2๐ (deg.) 50 60 70 Intensity (a.u.) 30 40 2๐ (deg.) 50 60 50 60 FeCl3 · 6H2 O 30 40 2๐ (deg.) 50 60 30 70 40 2๐ (deg.) 50 60 70 MgSO4 · 5H2 O (PDF#25-0532) 20 30 70 40 50 60 70 2๐ (deg.) 70 (PDF#33-0645) 20 20 Intensity (a.u.) 40 2๐ (deg.) Intensity (a.u.) 30 60 ๐พ-Fe2 O3 10 20 (440) (422) (511) (400) (202) Cl (220) (311)Cl (311) 50 70 70 ๐พ-Fe2 O3 10 40 2๐ (deg.) Intensity (a.u.) 20 (PDF#39-1346) 10 30 60 (PDF#39-1346) 10 Intensity (a.u.) 10 20 50 Intensity (a.u.) (2) 10 40 2๐ (deg.) (440) (021) Fe (130)Fe (111) Intensity (a.u.) Intensity (a.u.) 10 30 (151)Mg (422) (511) (3) (1) 20 (400) 10 70 (212)Mg (311) 60 (111) Intensity (a.u.) (440) (511) 50 (220) 40 2๐ (deg.) (422) (400) (220) 30 (111)Mg 20 (0) (131)Fe (021) Mg 10 (311)Cl (111) Intensity (a.u.) (0) (202) Cl (311) Journal of Chemistry 10 Fe2 (SO4 )3 · 11H2 O (PDF#28-0496) 20 30 40 2๐ (deg.) 50 60 70 Figure 1: XRD patterns of all samples, with (hkl), (hkl)Cl , (hkl)Mg , and (hkl)Fe corresponding to ๐พ-Fe2 O3 , FeCl3 โ 6H2 O, MgSO4 โ 5H2 O, and Fe2 (SO4 )3 โ 11H2 O, respectively. due to peak broadening [27] and by XPS because the data are very close (see Table 2). However, Fe3 O4 is not very stable and is sensitive to oxidation [28]. It was found that Fe3 O4 nanocrystallites transformed into ๐พ-Fe2 O3 nanocrystallites using ferric nitrate treatment [29]. Therefore, it is judged that the magnetic phase for samples (0) and (3) is ๐พ-Fe2 O3 , rather than Fe3 O4 or mixed phase of both ๐พ-Fe2 O3 and Fe3 O4 . TEM observations revealed that sample (3) was identical to sample (0) and that it consisted of nearly spherical nanoparticles. Typical TEM images for both samples are shown in Figure 5. Statistical analysis [30] indicated that the diameter of the nanoparticles fitted a lognormal distribution. The median diameters (๐๐ ) for samples (0) and (3) were 10.55 and 13.16 nm, respectively, and the associated standard 4 Journal of Chemistry (0) (1) 0.0 โ0.5 โ0.05 6 0.00 0.05 H (kOe) 0 ๐ (emu/g) 60 โ30 โ60 โ10 โ5 58 56 54 0.00 0 0 (2) โ6 0.07 0.14 1/H (kOe) 5 โ12 โ10 10 โ5 0 H (kOe) H (kOe) 5 10 0.5 (3) 0.0 โ0.5 โ0.05 0.00 0.05 H (kOe) 0 44 ๐ (emu/g) ๐ (emu/g) 25 ๐ (emu/g) 50 โ25 42 0.000 โ50 โ10 โ5 0 H (kOe) 0.125 0.250 1/H (kOe) 5 10 Figure 2: Specific magnetization curves measured at room temperature for all samples. Fe (0) (3) O Counts (a.u.) Fe Counts (a.u.) ๐ (emu/g) 30 12 0.5 ๐ (emu/g) ๐ (emu/g) 60 S O Mg Cl 2 4 6 8 2 Energy (keV) Figure 3: EDS spectra for samples (0) and (3). 4 Energy (keV) 6 8 Journal of Chemistry 5 (0) Count (a.u.) Count (a.u.) Fe2p3/2 (3) O1s Mg1s Fe2p3/2 O1s Cl2p3/2 1200 1000 800 600 400 Binding energy (eV) (0) 720 1200 1000 800 600 400 Binding energy (eV) 0 (0) 716 712 Binding energy (eV) 536 708 534 532 530 528 Binding energy (eV) 716 712 Binding energy (eV) 708 536 (0) Cl 526 204 202 534 P1 532 530 528 Binding energy (eV) (0) 526 204 202 200 (0) Mg 170 168 166 Binding energy (eV) 164 1308 1306 1304 1302 Binding energy (eV) 1300 (3) Counts (a.u.) Counts (a.u.) 172 170 168 166 Binding energy (eV) 164 1308 1306 1304 1302 Binding energy (eV) Figure 4: XPS spectra for samples (0) and (3). 198 Binding energy (eV) Counts (a.u.) Counts (a.u.) 172 194 (3) (3) 174 200 198 196 Binding energy (eV) Counts (a.u.) P2 S 174 0 (3) Counts (a.u.) Counts (a.u.) (3) 720 200 Counts (a.u.) O Counts (a.u.) Counts (a.u.) Fe 200 S2p3/2 1300 196 194 6 Journal of Chemistry (3) (0) 100 nm 100 nm Figure 5: Typical TEM images for samples (0) and (3). Table 2: Binding energies (eV) of elements, determined from XPS measurements performed on samples (0) and (3). Sample (0) Fe2 O3 Fe3 O4 FeCl3 Sample (3) Fe2 O3 Fe3 O4 Fe2 (SO4 )3 MgSO4 Fe2p3/2 710.81 710.9 710.8 711.3 Fe2p3/2 711.41 710.9 710.8 711.05 O1s 530.19 530.2 530.1 Cl2p3/2 198.84 199 O1s 530.40 (P1); 530.2 530.1 531.65 (P2) 531.6 ? S2p3/2 168.99 Mg1s 1304.92 169.1 168.6 ? Note: the standard data are from the NIST online database for XPS at http://www.nist.gov; there are no O1s and Mg1s binding energies for MgSO4 . deviation values (ln ๐๐ , where ๐๐ is the geometry deviation) were 0.37 and 0.31, respectively. 3.2. Discussion. Experimental XRD and magnetization curve measurements indicated that the products after treatment with an FeCl3 solution were not ferromagnetic. The product after treatment with an FeSO4 solution exhibited a magnetic transition, similar to that observed for the products generated after treatment with an FeCl2 solution. These products mainly consisted of a ferrimagnetic ๐พ-Fe2 O3 phase. These results show that the magnetic transition was induced by Fe2+ , rather than by the acid radical ions. Additionally, samples (0) and (3) contained FeCl3 โ 6H2 O and Fe2 (SO4 )3 โ 11H2 O, which, respectively, correspond to the ferrous salts FeCl2 and FeSO4 treatment solution. This observation suggests that the ferrous salts induced the transformation of FeOOH in the precursor into ๐พ-Fe2 O3 via dehydration, and this resulted in the simultaneous oxidation of Fe2+ to Fe3+ . The results for sample (1) show that the ferric salt did not induce a transition, suggesting that the oxidization of the ferrous ions in the liquid phase was necessary for the dehydration of amorphous FeOOH to form magnetic phase. The experimental results for sample (2) show that the cuprous ions (Cu+ ), which may not have had the tendency to oxidize to cupric ions (Cu2+ ) in the liquid phase [31], did not cause FeOOH to form magnetic phase. This implies that the dehydrating action of the cuprous ions was weaker than that of the ferrous ions in the chemically induced transition in the liquid phase. The experimental results also indicated that the products after treatment with an FeSO4 solution contained MgSO4 , but the products after treatment with an FeCl2 solution had no corresponding Mg-containing constituent. This result suggests that FeSO4 in the treatment solution not only induced the transformation of FeOOH into ๐พ-Fe2 O3 via dehydration and then underwent oxidation into Fe2 (SO4 )3 , but also reacted with dissolved Mg(OH)2 , producing MgSO4 : Mg2+ + 4 (Fe3+ + SO4 2โ ) ๓ณจโ MgSO4 + Fe2 (SO4 )3 + 2Fe3+ (3) According to (3), MgSO4 first adsorbed onto the ๐พ-Fe2 O3 crystallites, forming MgSO4 โ 5H2 O. Some Fe3+ and SO4 2โ ions also adsorbed, forming Fe2 (SO4 )3 โ 11H2 O on the outermost layer. Thus, the solutions of ferrous salts with different acid radicals (e.g., FeCl2 and FeSO4 ) could induce the transformation of the FeOOH/Mg(OH)2 precursor into a ๐พ-Fe2 O3 Journal of Chemistry 7 Table 3: Molar and mass percentages of phases in samples (0) and (3). Molar percentage (๐ฆ) ๐พ-Fe2 O3 /FeCl3 ๐พ-Fe2 O3 /MgSO4 /Fe2 (SO4 )3 Sample (0) Sample (3) Mass percentage (๐ง) ๐พ-Fe2 O3 /FeCl3 โ 6H2 O ๐พ-Fe2 O3 /MgSO4 โ 5H2 O/Fe2 (SO4 )3 โ 11H2 O 97.24/2.76 95.42/4.58 87.34/7.81/4.85 75.44/8.87/15.69 percentages of ๐พ-Fe2 O3 , MgSO4 โ 5H2 O, and Fe2 (SO4 )3 โ 11H2 O (๐ฆ๐พ , ๐ฆMg , and ๐ฆS , resp.) could be described as follows: FeCl3 · 6H2 O eCl 2 In F Mg(OH)2 ๐พ-Fe2 O3 + Mg2+ + OHโ ๐ฆMg = FeOOH In F eSO 4 (๐Fe โ 2 (๐S โ ๐Mg ) /3) /2 ๐Fe /2 + ๐Mg ๐Mg ๐Fe /2 + ๐Mg × 100, (5) × 100, ๐ฆS = 100 โ ๐ฆ๐พ โ ๐ฆMg , ๐พ-Fe2 O3 Fe2 (SO4 )3 · 11H2 O + Fe3+ + OHโ MgSO4 · 5H2 O Figure 6: Schematic diagram of the formation of magnetic nanoparticles using FeCl2 and FeSO4 solutions. magnetic phase via dehydration. However, the coating on the ๐พ-Fe2 O3 crystallites varied when the treatment solution was changed. The results revealed that sample (0) contained ๐พFe2 O3 and FeCl3 โ 6H2 O, and sample (3) contained ๐พ-Fe2 O3 , MgSO4 โ 5H2 O, and Fe2 (SO4 )3 โ 11H2 O. A schematic diagram illustrating the formation of the nanoparticles using FeCl2 and FeSO4 solutions is shown in Figure 6. As the magnetic nanoparticles have surface heterolayers that are different from the magnetic core, the magnetic core spins close to surface can be pinned by the layer, and the pinning would cause an unusually large coercivity [32, 33]. So, such ๐พ-Fe2 O3 based magnetic nanoparticles appeared to be apparently ferromagnetic due to surface pinning rather than shape effects [34]. Because the metal salts were paramagnetic, the difference in the apparent magnetization of samples (0) and (3) depended on the ๐พ-Fe2 O3 content. For sample (0), the molar percentages of ๐พ-Fe2 O3 and FeCl3 โ 6H2 O (๐ฆ๐พ and ๐ฆCl , resp.) could be described as follows: ๐ฆ๐พ = ๐ฆ๐พ = (๐Fe โ ๐Cl /3) /2 × 100, (๐Fe โ ๐Cl /3) /2 + ๐Cl /3 (4) ๐ฆCl = 100 โ ๐ฆ๐พ , where ๐Fe and ๐Cl are the atomic percentages of Fe and Cl in sample (0), respectively. For sample (3), the molar where ๐Fe , ๐Mg , and ๐S are the atomic percentages of Fe, Mg, and S in sample (3), respectively. Thus, the molar percentages of each phase (๐ฆ๐ ) in samples (0) and (3) could be calculated from the ๐๐ values, which were measured using EDS, and are listed in Table 3. The mass percentages of each phase (๐ง๐ ) in a sample were deduced using the following expression: ๐ง๐ = ๐ฆ๐ ๐ด ๐ × 100, โ ๐ฆ๐ ๐ด ๐ (6) where ๐ด ๐ is the molar weight of the ๐th phase. Accordingly, the mass percentage of each phase was calculated for samples (0) and (3) from the molar percentages (๐ฆ๐ ) and molar weights of ๐พ-Fe2 O3 , FeCl3 โ 6H2 O, MgSO4 โ 5H2 O, and Fe2 (SO4 )3 โ 11H2 O. The mass percentage values are listed in Table 3. Table 3 indicates that the main species in samples (0) and (3) was ๐พFe2 O3 . The ๐๐ values for samples (0) and (3) could therefore be expressed as ๐๐ โ ๐ง๐พ โ ๐๐พ,๐ 100 , (7) where ๐ง๐พ is the mass percentage of the ๐พ-Fe2 O3 phase and ๐๐พ,๐ is the specific saturation magnetization of the ๐พ-Fe2 O3 phase. For samples (3) and (0), their ๐๐พ,๐ can be regarded as same since the ๐พ-Fe2 O3 phase resulted from the same FeOOH phase. Thus, the ratio of the ๐๐ values for samples (3) and (0) was proportional to the mass fraction ๐ง๐พ of ๐พ-Fe2 O3 . From the experimental results for the magnetization, we found that the ratio of the ๐๐ values for samples (3) and (0) was 0.73, which agreed with the ratio of the mass percentages ๐ง๐พ of the ๐พ-Fe2 O3 phase (0.79). As a consequence, the mass percentage was available. The volume percentage of each phase of the samples (ฮฆ๐ ) could be obtained from the ๐ง๐ value: ฮฆ๐ = ๐ง๐ /๐๐ × 100, โ ๐ง๐ /๐๐ (8) where ๐๐ is the density of the ๐ phase. The ๐๐ values for ๐พ-Fe2 O3 , FeCl3 โ 6H2 O, MgSO4 โ 5H2 O, and Fe2 (SO4 )3 โ 11H2 O 8 Journal of Chemistry Table 4: Volume percentages of phases (ฮฆ๐ ) in samples (0) and (3). ๐พ-Fe2 O3 /FeCl3 โ 6H2 O 88.69/11.31 Sample (0) Sample (3) ๐พ-Fe2 O3 /MgSO4 โ 5H2 O/Fe2 (SO4 )3 โ 11H2 O 56.18/17.07/26.75 were 4.90, 1.844, 1.896, and 2.14 g/cm3 , respectively. The values calculated for ฮฆ๐ are listed in Table 4. Because the particles in samples (0) and (3) were nearly spherical, the ratio of the average particle volume in sample (0) (โจ๐โฉ(0) ) to the average particle volume in sample (3) (โจ๐โฉ(3) ) could be described as follows: 3 โจ๐โฉ(0) โจ๐โฉ๐,(0) = , โจ๐โฉ(3) โจ๐โฉ3๐,(3) (9) where โจ๐โฉ๐,(0) and โจ๐โฉ๐,(3) are the diameters corresponding to the average volumes of the particles in samples (0) and (3), respectively. โจ๐โฉ๐ could be calculated directly from the size distribution parameters obtained using TEM by using the equation โจ๐โฉ๐ = exp(ln ๐๐ + 1.5 ln2 ๐๐ ) [30]. Accordingly, a โจ๐โฉ3๐,(0) /โจ๐โฉ3๐,(3) value of 0.62 was obtained. Additionally, the average volume of the ๐พ-Fe2 O3 based nanoparticles, which contained many phases, (โจ๐โฉ), can be expressed as โจ๐โฉ = โจ๐๐พ โฉ โ ฮฆ๐ /ฮฆ๐พ , where โจ๐๐พ โฉ is the average volume of the ๐พFe2 O3 phase and ฮฆ๐พ is the volume percentage of the ๐พFe2 O3 phase. Because the ๐พ-Fe2 O3 phase was produced from FeOOH, the โจ๐๐พ โฉ values for samples (0) and (3) were the same. Therefore, the ratio of โจ๐โฉ(0) to โจ๐โฉ(3) could be described by ฮฆ๐พ,(3) /ฮฆ๐พ,(0) ; that is, โจ๐โฉ(0) ฮฆ๐พ,(3) = , โจ๐โฉ(3) ฮฆ๐พ,(0) (10) where ฮฆ๐พ,(0) and ฮฆ๐พ,(3) are the volume percentages of the ๐พFe2 O3 phase in samples (0) and (3), respectively. Thus, the โจ๐โฉ(0) /โจ๐โฉ(3) value obtained from the volume percentages was 0.63, which agreed with the value of โจ๐โฉ3๐,(0) /โจ๐โฉ3๐,(3) (0.62) and confirmed the validity of both the coating model of the nanoparticle structure and the volume percentage. 4. Conclusions Metal ions in the treatment solution play a key role in the magnetic transition during the preparation of magnetic nanoparticles via the chemically induced transition of FeOOH/Mg(OH)2 . No magnetic transition occurred when FeCl3 and CuCl were used as treatment solutions; in contrast, the product obtained using treatment with an FeSO4 solution, which is similar to that obtained using an FeCl2 solution, showed ferromagnetic behavior. The magnetic phase of the two products was ๐พ-Fe2 O3 . Experimental results revealed FeCl3 and Fe2 (SO4 )3 in the products after treatment with FeCl2 and FeSO4 solutions, respectively. Thus, Fe2+ , which likely has a stronger dehydrating ability than the cuprous ion Cu+ , might have undergone oxidation to Fe3+ , thereby inducing a magnetic transition via dehydration. Treatment with an FeSO4 solution resulted in the formation of MgSO4 on the ๐พ-Fe2 O3 crystallites (the binding energy of Mg1s is โผ1304.9 eV), whereas no Mg-containing compound formed in the product of the treatment using an FeCl2 solution. This shows that the nonmagnetic coating on the magnetic ๐พ-Fe2 O3 crystallites varied with changes in the acid radical ions in the treatment solution. Treatment with an FeSO4 solution led to a higher content of the nonmagnetic phase in the product, and thus weaker magnetization, despite the fact that these particles were larger than those formed after treatment with an FeCl2 solution. Due to the surface pinned effect, such ๐พFe2 O3 based magnetic nanoparticles, which were produced via the chemically induced transition, exhibited apparently ferromagnetism. Here, we demonstrated the use of an FeOOH/Mg(OH)2 precursor and a ferrous salt treatment solution (as FeCl2 solution or FeSO4 solution) as a simple and effective method for the preparation of ๐พ-Fe2 O3 -based magnetic nanoparticles. Obviously, the alkali-oxide FeOOH dehydrating into ๐พ-Fe2 O3 was induced with Fe2+ in ferrous salt solution transforming into Fe3+ . For the preparation of magnetic nanoparticles via chemically induced transition (CIT) method, the relation between acting energy of the alkali-oxide dehydrating and oxidation of the ferrous ions is interesting, and this mechanism will be further investigated in future work. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments Financial support for this work was provided by the Innovation Foundation Project of Southwest University, China (no. 1318001), and the National Science Foundation of China (no. 11074205). References [1] D. S. Mathew and R.-S. Juang, โAn overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions,โ Chemical Engineering Journal, vol. 129, no. 1โ 3, pp. 51โ65, 2007. [2] M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, โChemically prepared magnetic nanoparticles,โ International Materials Reviews, vol. 49, no. 3-4, pp. 125โ170, 2004. [3] J. Nogueฬsa, J. Sorta, V. Langlaisb et al., โExchange bias in nanostructures,โ Physics Reports, vol. 422, pp. 65โ117, 2005. [4] A. S. Teja and P.-Y. Koh, โSynthesis, properties, and applications of magnetic iron oxide nanoparticles,โ Progress in Crystal Journal of Chemistry [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] Growth and Characterization of Materials, vol. 55, no. 1-2, pp. 22โ45, 2009. B. H. Kim, M. J. Hackett, J. Park, and T. Hyeon, โSynthesis, characterization, and application of ultrasmall nanoparticles,โ Chemistry of Materials, vol. 26, no. 1, pp. 59โ71, 2014. C. T. Yavuz, J. T. Mayo, W. W. Yu et al., โLow-field magnetic separation of monodisperse Fe3 O4 nanocrystals,โ Science, vol. 314, no. 5801, pp. 964โ967, 2006. D. S. Toledano and V. E. Henrich, โKinetics of SO2 adsorption on photoexcited ๐ผ-Fe2 O3 ,โ Journal of Physical Chemistry B, vol. 105, no. 18, pp. 3872โ3877, 2001. C. C. Berry and A. S. G. Curtis, โFunctionalisation of magnetic nanoparticles for applications in biomedicine,โ Journal of Physics D: Applied Physics, vol. 36, no. 13, pp. R198โR206, 2003. J. Li, X. Y. Qiu, Y. Q. Lin, L. L. Chen, X. D. Liu, and D. C. Li, โLarge magneto-optical birefringence of colloidal suspensions of ๐ผ-FeOOH goethite nanocrystallites,โ Chemical Physics Letters, vol. 590, pp. 165โ168, 2013. X. Song and J.-F. Boily, โCompetitive ligand exchange on akaganeฬite surfaces enriches bulk chloride loadings,โ Journal of Colloid and Interface Science, vol. 376, no. 1, pp. 331โ333, 2012. S. Yu and C. M. Chow, โCarboxyl group (-CO2 H) functionalized ferrimagnetic iron oxide nanoparticles for potential bioapplications,โ Journal of Materials Chemistry, vol. 14, no. 18, pp. 2781โ2786, 2004. D. Y. Szaboฬ and D. Vollath, โNanocomposites from coated nanoparticles,โ Advanced Materials, vol. 11, no. 15, pp. 1313โ1316, 1999. B. R. V. Narasimhan, S. Prabhakar, P. Manohar, and F. D. Gnanam, โSynthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate,โ Materials Letters, vol. 52, no. 4-5, pp. 295โ300, 2002. T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, โSynthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process,โ Journal of the American Chemical Society, vol. 123, no. 51, pp. 12798โ12801, 2001. K. V. P. M. Shafi, A. Ulman, X. Yan et al., โSonochemical synthesis of functionalized amorphous iron oxide nanoparticles,โ Langmuir, vol. 17, no. 16, pp. 5093โ5097, 2001. T. Nakanishi, H. Iida, and T. Osaka, โPreparation of iron oxide nanoparticles via successive reduction-oxidation in reverse micelles,โ Chemistry Letters, vol. 32, no. 12, pp. 1166โ1167, 2003. V. Sreeja and P. A. Joy, โMicrowave-hydrothermal synthesis of ๐พFe2 O3 nanoparticles and their magnetic properties,โ Materials Research Bulletin, vol. 42, no. 8, pp. 1570โ1576, 2007. A. Rounanet, H. Solmon, G. Pichelin, C. Roucau, F. Sibieude, and C. Monty, โSynthesis by vaporization-condensation and characterization of ๐พ-Fe2 O3 , In2 O3 , SnO2 , ZnO and Zr1โ๐ฅ Y๐ฅ O2โ๐ฟ nanophases,โ Nanostructured Materials, vol. 6, no. 1โ4, pp. 283โ286, 1995. L. Casas, A. Roig, E. Molins, J. M. Greneฬche, J. Asenjo, and J. Tejada, โIron oxide nanoparticles hosted in silica aerogels,โ Applied Physics A, vol. 74, no. 5, pp. 591โ597, 2002. B. L. Cushing, V. L. Kolesnichenko, and C. J. OโConnor, โRecent advances in the liquid-phase syntheses of inorganic nanoparticles,โ Chemical Reviews, vol. 104, no. 9, pp. 3893โ3946, 2004. J. Li, Y. Q. Lin, X. D. Liu et al., โThe study of transition on NiFe2 O4 nanoparticles prepared by co-precipitation/calcination,โ Phase Transitions, vol. 84, no. 1, pp. 49โ57, 2011. 9 [22] S. Asuha, S. Zhao, H. Y. Wu, L. Song, and O. Tegus, โOne step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties,โ Journal of Alloys and Compounds, vol. 472, no. 1-2, pp. L23โL25, 2009. [23] B. Wen, J. Li, Y. Lin et al., โA novel preparation method for ๐พ-Fe2 O3 nanoparticles and their characterization,โ Materials Chemistry and Physics, vol. 128, no. 1-2, pp. 35โ38, 2011. [24] J. Fu, L. H. Lin, and J. Li, A Novel Preparation Method for Magnetic Nanoparticles and Their Characterization, FMTIF, Beijing, China, 2011. [25] L. L. Chen, J. Li, Y. Q. Lin et al., โPreparation of ๐พFe2 O3 /ZnFe2 O4 nanoparticles by enhancement of surface modification with NaOH,โ Chemistry Central Journal, vol. 8, article 40, 2014. [26] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, and B. Jeyadevan, โCo-Zn ferrite nanoparticles for ferrofluid preparation: study on magnetic properties,โ Physica B: Condensed Matter, vol. 363, no. 1โ4, pp. 225โ231, 2005. [27] R. Frison, G. Cernuto, A. Cervellino et al., โMagnetitemaghemite nanoparticles in the 5โ15 nm range: correlating the core-shell composition and the surface structure to the magnetic properties. A total scattering study,โ Chemistry of Materials, vol. 25, no. 23, pp. 4820โ4827, 2013. [28] S. Laurent, D. Forge, M. Port et al., โMagnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications,โ Chemical Reviews, vol. 108, no. 6, pp. 2064โ2110, 2008. [29] J. Li, X. Y. Qiu, Y. Q. Lin, X. D. Liu, R. L. Gao, and A. R. Wang, โA study of modified Fe3 O4 nanoparticles for the synthesis of ionic ferrofluids,โ Applied Surface Science, vol. 256, no. 23, pp. 6977โ6981, 2010. [30] C. G. Granqvist and R. A. Buhrman, โUltrafine metal particles,โ Journal of Applied Physics, vol. 47, no. 5, pp. 2200โ2219, 1976. [31] Y. Q. Lin, H. Mao, and J. Li, โThe solution dependence of Cu modification during the synthesis of ๐พ-Fe2 O3 nanoparticles,โ Key Engineering Materials, vol. 680, pp. 261โ266, 2016. [32] M. Blanco-Mantecoฬn and K. OโGrady, โInteraction and size effects in magnetic nanoparticles,โ Journal of Magnetism and Magnetic Materials, vol. 296, no. 2, pp. 124โ133, 2006. [33] Q. A. Pankhurst, Aฬ. Y. Martฤฑฬnez, and L. Fernaฬndez Barquฤฑฬn, โInterfacial exchange pinning in amorphous iron-boron nanoparticles,โ Physical Review B, vol. 69, Article ID 212401, 2004. [34] X. M. Gong, J. Li, Y. Q. Lin et al., โFormation of highly crystalline maghemite nanoparticles from ferrihydrite in the liquid phase,โ Chinese Science Bulletin, vol. 59, no. 29-30, pp. 3904โ3911, 2014. International Journal of Medicinal Chemistry Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Photoenergy International Journal of Organic Chemistry International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Analytical Chemistry Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Physical Chemistry Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Carbohydrate Chemistry Hindawi Publishing Corporation http://www.hindawi.com Journal of Quantum Chemistry Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com Journal of The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Journal of International Journal of Inorganic Chemistry Volume 2014 Journal of Theoretical Chemistry Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Spectroscopy Hindawi Publishing Corporation http://www.hindawi.com Analytical Methods in Chemistry Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 ChromatographyโResearchโInternational Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Electrochemistry Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Catalysts Hindawi Publishing Corporation http://www.hindawi.com Journal of Applied Chemistry Hindawi Publishing Corporation http://www.hindawi.com Bioinorganic Chemistry and Applications Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Chemistry Volume 2014 Volume 2014 Spectroscopy Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014
© Copyright 2026 Paperzz