Chapter 8.3 Proving Parallelograms Geometry Objective: 1. Recognize the conditions that make a quadrilateral a parallelogram 2. Prove that a set of points forms a parallelogram in the coordinate plane A. There are five tests for parallelograms. (ways to prove that a quadrilateral is a parallelogram) 1. (Definition) If both pairs of opposite sides of a quadrilateral are ___________, then the quadrilateral is a parallelogram. If (or ) 2. If both pairs of opposite _______of a quadrilateral are __________, then the quadrilateral is a parallelogram. If 3. If both pairs of opposite _______of a quadrilateral are __________, then the quadrilateral is a parallelogram. If 4. If the __________ of a quadrilateral __________ each other, then the quadrilateral is a parallelogram. If 5. If ____ _____ of opposite sides is both _________ and _________, then the quadrilateral is a parallelogram. If B. Examples Determine whether each quadrilateral is a parallelogram. If so, state the theorem. 7 4 4 7 . 4 4 Chapter 8.3 C. Proofs 1. Given: Cont'd ΔPTS ≅ ΔRTQ P Q T Prove: PQRS is a R S 1. Given 2. 2. CPCTC 3. 3. Def'n segment bisector 1. 4. ΔPTS ≅ ΔRTQ PQRS is a 2. Given: Prove: 1. 3. . A <1 ≅ <2; AB ≅ DC ABCD is a <1 ≅ <2; AB ≅ DC 1 D 1. 2 Given 2. 2. 3. 4. ABCD is a 3. Use the definition to determine whether ABCD is a parallelogram. A(3, 3), B(2, 5), C(5, 2), D(0, 0) B C
© Copyright 2026 Paperzz