1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = −4, x = −3, x = −2, x = −1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s) of x where f is not differentiable but is continuous. Ans: x = −2, x = 3 c. Find the value(s) of x where f is not continuous, but has a limit. Ans: x = 1, x = 4 d. Find the value(s) of x where f does not have a limit. Ans: x = −4, x = −3, x = −1, x = 2, x = 5 2. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = −5, x = −4, x = −3, x = −2, x = −1, x = 1, x = 2, x = 3 x = 4, x = 5 b. Find the value(s) of x where f is not differentiable but is continuous. Ans: x = −1, x = 2, x = 3, x = 4 c. Find the value(s) of x where f is not continuous, but has a limit. Ans: x = −5, x = −3, x = 1 d. Find the value(s) of x where f does not have a limit. Ans: x = −4, x = −2, x = 5 3. Find f 0 (x), or dy , as appropriate: dx a. f (x) = 3 Ans: f 0 (x) = 0 b. f (x) = 4x + 1 Ans: f 0 (x) = 4 c. f (x) = −2x2 − 3x + 1 Ans: f 0 (x) = −4x − 3 3x3 4 9 Ans: f 0 (x) = x2 4 √ e. f (x) = x − 1 d. f (x) = 1 Ans: f 0 (x) = √ 2 x √ √ √ f. f (x) = − x5 + 3 x3 + 7 x 5 9√ 7 Ans: f 0 (x) = − x3/2 + x+ √ 2 2 2 x g. f (x) = ex Ans: f 0 (x) = ex h. f (x) = e Ans: f 0 (x) = 0 i. f (x) = 3xex Ans: f 0 (x) = 3ex + 3xex √ x+1 j. y = 3x − 4 √ √ 1 (3x − 4)( 2√ ) − ( x + 1)(3) dy −3x − 6 x − 4 x √ Ans: = = dx (3x − 4)2 (3x − 4)2 (2 x) k. y = (4x + 3)3 Ans: dy = 3(4x + 3)2 (4) = 12(4x + 3)2 dx l. y = (x2 − 3x − 2)5 dy = 5(x2 − 3x − 2)4 (2x − 3) dx p m. f (x) = 4x3 − 2x2 + 4x + 5 Ans: 12x2 − 4x + 4 6x2 − 2x + 2 Ans: f 0 (x) = √ = √ 2 4x3 − 2x2 + 4x + 5 4x3 − 2x2 + 4x + 5 n. f (x) = e3x−1 Ans: f 0 (x) = 3e3x−1 o. y = ex 2 2 dy = 2xex dx p. y = ln x Ans: Ans: dy 1 = dx x q. y = ln(x2 + 4x − 1) dy 2x + 4 = 2 dx x + 4x − 1 1 r. y = ln x dy 1 Ans: =− dx x s. y = ln(ln x) Ans: dy 1 = dx x ln x 1 t. y = ln x dy 1 Ans: =− dx x(ln x)2 Ans: u. y = sin x Ans: f 0 (x) = cos x 3π v. f (x) = sin 4 Ans: f 0 (x) = 0 w. f (x) = 3x sin x + sin x cos x Ans: f 0 (x) = 3 sin x + 3x cos x + cos2 x − sin2 x x. f (x) = 3x2 ex + 4x tan x Ans: f 0 (x) = 6xex + 3x2 ex + 4x sec2 x + 4 tan x y. f (x) = sin x cos xex Ans: f 0 (x) = sin x cos xex − sin2 xex + cos2 xex z. y = 3x2 sin x cos xex dy = 6x sin x cos xex + 3x2 cos2 xex − 3x2 sin2 xex + 3x2 sin x cos xex dx 2 aa. y = e4 sin(x −1) Ans: 2 2 dy = e4 sin(x −1) 4 cos x2 − 1 2x = 8xe4 sin(x −1) cos x2 − 1 dx 3ex − sin x bb. y = cos x − 4ex Ans: Ans: dy (cos x − 4ex )(3ex − cos x) − (3ex − sin x)(− sin x − 4ex ) (cos x − 4ex )(3ex − cos x) + (3ex − sin x)(sin x + 4ex ) = = x 2 dx (cos x − 4e ) (cos x − 4ex )2 9x2 ex + 4x cos x √ 2 sin x + xex √ x √ ex 2 x dy (2 sin x + xex )[9(2xex + x2 ex ) + 4(cos x − x sin x)] (9x e + 4x cos x)(2 cos x + 2√x + xe ) √ √ Ans: = − dx (2 sin x + xex )2 (2 sin x + xex )2 cc. y = dd. y = Ans: ex sin x − x cos x 3x cos x + 4xex (3x cos x + 4xex )(ex cos x + ex sin x − cos x + x sin x) (ex sin x − x cos x)[3(cos x − x sin x) + 4ex + 4xex ] dy = − dx (3x cos x + 4xex )2 (3x cos x + 4xex )2 ee. f (x) = sin(3x2 + 1) Ans: f 0 (x) = 6x cos(3x2 + 1) ff. f (x) = cos (sin (4x − 2)) Ans: f 0 (x) = −4 sin(sin(4x − 2))(cos(4x − 2)) gg. y = sin(e3x ) dy = cos e3x 3e3x dx hh. f (x) = sin(4x) Ans: Ans: f 0 (x) = 4 cos 4x ii. y = sin3 x Ans: dy = 3 sin2 x cos x dx jj. y = cos4 (x2 + 1) Ans: dy = −8x cos3 (x2 + 1)(sin(x2 + 1)) dx kk. y = ecos 2 x−1 2 dy = −2 sin x cos xecos x−1 dx ll. f (x) = tan3 e2x−1 Ans: Ans: f 0 (x) = 6 tan2 (e2x−1 )(sec2 (e2x−1 ))(e2x−1 ) mm. f (x) = cos(2x3 − 4)ecos x Ans: f 0 (x) = ecos x (− sin(2x3 − 4)(6x2 )) + cos(2x3 − 4)(ecos x )(− sin x) nn. f (x) = x tan(x2 + 1)e3x Ans: f 0 (x) = tan(x2 + 1)e3x + x[sec2 (x2 + 1)(2x)e3x + 3e3x tan(x2 + 1)] 2 oo. f (x) = x2 esin x + ex sin(cos(3x − 1)) 2 2 Ans: f 0 (x) = 2xesin(x ) + x2 (esin(x ) )(cos(x2 ))(2x)+ ex (cos(cos(3x − 1)))(− sin(3x − 1)(3)) + sin(cos(3x − 1))ex 2 e + 3xex −2 pp. y = e − 4 sin x cos2 x (e − 4 sin x cos2 x)[3xex dy Ans: = dx qq. y = tan5 sec3 x2 + 3 2 −2 2 (2x) + 3ex −2 ] − (e + 3xex (e − 4 sin x cos2 x)2 2 −2 )[−4 cos3 x + 8 sin2 x cos x] dy = 5 tan4 sec3 x2 + 3 sec2 sec3 x2 + 3 3 sec2 x2 + 3 sec x2 + 3 tan x2 + 3 (2x) dx rr. y = arccos x Ans: Ans: 1 dy = −√ dx 1 − x2 ss. y = sin5 e3π+5 + 4e3 x2 Ans: dy = 2 sin5 e3π+5 + 4e3 x dx tt. y = arcsin(x2 − 5x + 1) Ans: dy 2x − 5 =p dx 1 − (x2 − 5x + 1)2 uu. y = arctan2 (ln 3x) Ans: 1 dy = 2 arctan(ln(3x)) dx x[1 + (ln(3x))2 ] vv. y = Ans: ln(3x) sin(ln x2 ) sin(ln x2 ) x1 − ln(3x)(cos(ln(x2 )) x2 ) dy = dx (sin(ln(x2 )))2 ww. y = 3e4x sin−1 (3x2 + 1) ln x sin 5x + 3x2 cos2 x Ans: dy = dx (ln x sin(5x) + 3x2 cos2 x)[12e4x (sin−1 (3x2 + 1) + 3e4x √ 6x 1−(3x2 +1)2 (ln x sin(5x) + 3x2 cos2 x)2 (3e4x sin−1 (3x2 + 1)) 1 x − sin(5x) + 5 ln x cos(5x) + 3(2x cos2 x − 2x2 cos x sin x) (ln x sin(5x) + 3x2 cos2 x)2 4. Find the equation of the line tangent to the given function f at the given point x = a: a. f (x) = 2, a = 3 Ans: y = 2 b. f (x) = 5x − 1, a = −2 Ans: y = 5x − 1 c. f (x) = x2 − 2x + 4, a = 1 Ans: y = 3 d. f (x) = ln x, a = 3 Ans: y − ln 3 = 1 (x − 3) 3 e. f (x) = e3x , a = −2 3 1 = 6 (x + 2) e6 e f. f (x) = xex − ln 4x, a = 1 Ans: y − Ans: y − (e − ln 4) = (2e − 1)(x − 1) π g. f (x) = sin x, a = 6 √ 1 3 π Ans: y − = x− 2 2 6 5. a. Define a function that has a left and right handed limit at a point a, but f does not have a limit at a. b. Define a function that has a limit at a point b but is undefined at b. c. Define a function that has a limit at point c, is defined at c, but is discontinuous at c. d. Define a function that is continuous at point d but is not differentiable at d. e. Define a function that is first differentiable at point p but is not second differentiable at point p. f. Draw the graph of a function which has all of the properties in a, b, c, d, e, above. Ans: There are more than one correct answer. The function defined below satisfies all conditions a through e: f (x) = −3 if x ≤ −2 −2 if − 2 < x < −1 sin x x if −1≤x<1 x2 −4 if 1 ≤ x < 3, x 6= 2 if x=2 if 3≤x≤5 if 5<x x−2 5 √ 3 x−4 p 3 (x − 6)4 y lim f (x) = −3 13 lim f (x) = −2 12 lim f (x) Does not exist. 11 x→−2− x→−2+ x→−2 lim f (x) = 1, f (0) is undefined. x→0 10 lim f (x) = 4, f (2) = 5, f is discontinuous at 5. 9 f is continuous at x = 4 but not differentiable at 4. x→2 8 not second differentiable at 6. f is first differentiable at x = 6 but The graph of f is drawn below. 7 6 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3 -4 -5 6. Think About: -6 a. Given the graph of the original function f (x), how can you draw the graph of its derivative, f 0 (x)? -7 of a function, f 0 (x), how can you draw the graph of the original function, b. Given the graph of the derivative f (x)? -8 dy -9 by implicite differentiation: dx a. y sin x = x cos y 7. Find Ans: dy cos y − y cos x = dx sin x + x sin y b. x2 y + y 2 x = 5 Ans: dy −2xy − y 2 = 2 dx x + 2xy c. 2y − 4x sin x = ey Ans: dy 4 sin x + 4x cos x = dx 2 − ey d. ln(xy) + Ans: x =1 y dy −y 2 − xy = dx xy − x2 e. exy + ln(x + y) = 2xy Ans: dy 2y(x + y) − yexy (x + y) − 1 = dx −2x(x + y) + xexy (x + y) + 1 8. Find f 00 (x) and f 000 (x): a. f (x) = 4 Ans: f 0 (x) = 0 f 00 (x) = 0 f 000 (x) = 0 b. f (x) = 3x2 Ans: f 0 (x) = 6x f 00 (x) = 6 f 000 (x) = 0 c. f (x) = ex Ans: f 0 (x) = ex f 00 (x) = ex f 000 (x) = ex d. f (x) = ln x Ans: f 0 (x) = e. f (x) = x2 + 1 x−1 Ans: f 0 (x) = f. f (x) = 1 00 1 2 f (x) = − 2 f 000 (x) = 3 x x x √ 4 12 x2 − 2x − 1 00 f (x) = f 000 (x) = − (x − 1)2 (x − 1)3 (x − 1)4 x 1 1 3 Ans: f 0 (x) = √ f 00 (x) = − √ f 000 (x) = √ 3 2 x 4 x 8 x5 g. f (x) = x5/4 5 −3/4 000 15 5 1/4 00 x f (x) = x f (x) = − x−7/4 4 16 64 h. f (x) = arccos x Ans: f 0 (x) = Ans: f 0 (x) = − √ x 1 f 00 (x) = − f 000 (x) = −(1 − x2 )−3/2 − 3x2 (1 − x2 )−5/2 2 (1 − x2 )3/2 1−x i. f (x) = sin x Ans: f 0 (x) = cos x f 00 (x) = − sin x f 000 (x) = − cos x j. f (x) = esin x Ans: f 0 (x) = cos xesin x f 00 (x) = esin x (cos2 x − sin x) f 000 (x) = esin x (cos3 x − 3 sin x cos x − cos x) 9. Find the linearization of the given function at the given point a: a. f (x) = 2x − 3, a = 2 Ans: L(x) = 2x − 3, the linearization of a line is itself. b. f (x) = 2x − 3, a = 4 Ans: L(x) = 2x − 3, the linearization of a line is itself. c. f (x) = 2x − 3, a = 10 Ans: L(x) = 2x − 3, the linearization of a line is itself. d. f (x) = 4x2 − x + 3, a = −1 Ans: L(x) = −9x − 1 e. f (x) = sin x, a = 0 Ans: L(x) = x π 4 √ √ π 2 2 x− Ans: L(x) = − 2 2 4 x g. f (x) = e , a = 0 f. f (x) = cos x, a = Ans: L(x) = x + 1 h. f (x) = ex , a = 1 Ans: L(x) = e + e(x − 1) i. f (x) = ln x, a = 1 Ans: L(x) = x − 1 j. f (x) = ln x, a = 2 1 Ans: L(x) = (ln 2) + (x − 2) 2 k. f (x) = arctan x, a = 0 Ans: L(x) = x
© Copyright 2026 Paperzz