FhP- 437 RECOVERY OF METAL VALUES FROM METAL-FINISHING HYDROXIDE SLUDGES BY PHOSPHATE PRECIPITATION L. G. Twidwell, D. R. Dahnke, B. W. Arthur, S. M. Nordwick Department o f M e t a l l u r g y and M i n e r a l Processing Engineering Montana College o f M i n e r a l Science and Technology Butte, Montana 59701 ABSTRACT A process f o r s e l e c t i v e l y r e c o v e r i n g t r i v a l e n t c a t i o n s from e l e c t r o p l a t i n g hydroxide The process i s based on phosphate p r e c i p i t a t i o n . sludge m a t e r i a l s has been developed. The advantages o f t h e process are: 'simple s e l e c t i v e p r e c i p i t a t i o n 'easy s o l i d / l i q u i d s e p a r a t i o n ' e f f e c t i v e conversion o f t h e p r e c i p i t a t e d phosphates t o o t h e r products w i t h t h e regeneration o f phosphate reagent. A p p l i c a t i o n o f t h e process t o mixed metal hydroxide sludges w i l l be discussed. Experimental r e s u l t s i l l u s t r a t i n g s e l e c t i v e separation, f i l t e r a b i l i t y r a t e s , and conversion p o s s i b i l i t i e s w i l l a l s o be presented. INTRODUCTION Metal bearing hydroxide sludge m a t e r i a l i s generated by t h e metal f i n i s h i n g industry. Environmental impact and resource conservation c o n s i d e r a t i o n s have i n r e c e n t years promoted development o f a l t e r n a t i v e s t o d i s p o s i n g of these hydroxide m a t e r i a l s i n t o hazardous waste containment s i t e s . Separation and p r o d u c t i o n o f pure m e t a l s a l t s from mixed In metal sludges i s one such a l t e r n a t i v e . many cases s y n t h e s i s o f these metal s a l t s i s v e r y a t t r a c t i v e economically, w i t h p u r i f i e d forms demanding h i g h market value. I n o t h e r instances, metal compounds can be produced f o r reuse i n t h e metal f i n i s h i n g c i r c u it. P r e l i m i n a r y work on developing a series o f selective precipitations f o r the s e p a r a t i o n and recovery o f s o l u b l e metal components common t o e l e c t r o p l a t i n g sludges has been completed. As a p a r t o f t h i s work, flowsheets were developed f o r s e p a r a t i o n o f iron, copper, zinc, chromium and n i c k e l , and t h e v a r i o u s u n i t o p e r a t i o n s o f t h e flowsheets were t e s t e d a t a f l o w r a t e o f 200 l i t e r s p e r day. Although t h i s treatment and recovery system performed s a t i s f a c t o r i l y t h e chromium e x t r a c t i o n phase i n v o l v e d t h e v e r y c o s t l y step o f chromium o x i d a t i o n . Use o f a phosphate p r e c i p i t a t i o n system, however, may o f f e r t h e advantages o f a l l o w i n g s e l e c t i v e - - p r e c i p i t a t i o n o f metal phosphates, producing p r e c i p i t a t e s w i t h b e t t e r f i l t e r a b i l i t y chara c t e r i s t i c s than hydroxide o r s u l f a t e sol i d s , and e l i m i n a t i n g t h e chromium o x i d a t i o n step. The p r e c i p i t a t i o n s may be accomplished by e x p l o i t i n g t h e s e l e c t i v e s o l u b i l i t y as a f u n c t i o n o f pH and s o l u t i o n temperature of v a r i o u s metal phosphates. Typically, t r i v a l e n t metal phosphates are v e r y much l e s s s o l u b l e than d i v a l e n t metal phosphates. Metals such as i r o n o r chromium can be rap i d l y and c l e a n l y separated from s o l u t i o n s c o n t a i n i n g many grams p e r l i t e r ( g / l i t e r ) of n i c k e l . z i n c o r cadmium. These i r o n and chromium phosphates form as dense, s p h e r i c a l p a r t i c l e s and y i e l d e x c e l l e n t f i l t e r a b i l i t y and washing c h a r a c t e r i s t i c s . 338 A p r o j e c t i s c u r r e n t l y i n progress a t Montana College o f M i n e r a l Science and Technology t o pursue t h e f i n a l development o f t h i s process i n terms o f long-term o p e r a t i o n and i n t e g r a t i o n w i t h other, more t r a d i t i o n a l hydrometallurgical u n i t w h i t e p r e c i p i t a t e , gypsum, formed d u r i n g t h e leach operation. T h i s process r e j e c t e d approximately 88% o f t h e t o t a l calcium from t h e leach s o l u t i o n . Data i n Table 7 represents t h e a n a l y s i s o f t h e sludge m a t e r i a l w h i l e data i n Table 2 g i v e s t h e a n a l y s i s o f t h e leach s o l u t i o n . Note t h a t i f t h e t o t a l calcium a v a i l a b l e had leached, a calcium c o n c e n t r a t i o n o f 6.0 g / l i t e r would have resulted. The gypsum produced i n t h i s t e s t was 93% pure CaS04'2H20 w i t h i r o n being t h e major contaminant. operations. An extensive f i n a l r e p o r t w i l l be issued upon completion o f t h e p r o j e c t . TREATMENT TECHNIQUES Leaching S u l f u r i c a c i d i s a very e f f e c t i v e l e a c h i n g agent f o r metal-bearing hydroxide m a t e r i a l s : one gram o f H SO i s r e q u i r e d f o r each gram o f s o l i d s Bre4ent i n t h e sludge. The l e a c h i n g o p e r a t i o n i s performed a t ambient pressure and w i t h o u t e x t e r n a l heating. The heat o f r e a c t i o n i s s u f f i c i e n t t o r a i s e t h e temperature o f t h e leach s l u r r y t o about 50°C, which undoubtedly a i d s t h e d i s s o l u t i o n process. R e t e n t i o n t i m e i s 30 minutes, f o l l o w e d by s o l i d - l i q u i d separation. The f i l t r a t e t y p i c a l l y c o n t a i n s b e t t e r than 95% o f t h e metal values a v a i l a b l e from t h e sludge. A small f r a c t i o n o f unleachable m a t e r i a l , u s u a l l y c o n s i s t i n g o f sand from f i l t e r s , wood chips, p l a s t i c , etc.. comprises t h e f i l t e r cake. The leach s o l u t i o n i s u s u a l l y d i l u t e d t o y i e l d a t o t a l dissolved solids l e v e l o f 40 g / l i t e r . Some water may be added d u r i n g t h e leach, w i t h t h e remainder s u p p l i e d a f t e r s o l i d - l i q u i d separation. F i l t e r cake wash water i s used i n t h i s second d i l u t i o n t o enhance o v e r a l l metal recovery. The l e a c h i n g o p e r a t i o n produces a feed stream w i t h a pH value of approximately 1.5. Calcium Removal Copper Recovery High l e v e l s o f copper present in+She l e a c h s o l u t i o n preclude removal o f Fe f e r r i c phospate p r e c i p i t a t i o n because Cu w i l l coprecipitate with the iron. For those sludge m a t e r i a l s which c o n t a i n s i g n i f i c a n t f r a c t i o n s o f copper, t h e removal o f copper from t h e leach s o l u t i o n must precede f e r r i c phosphate p r e c i p i t a t i o n . Hydrometal l u r g i c a l treatment o f copper i s a w e l l developed commercial o p e r a t i o n and these technologies a r e r e a d i l y a p p l i c a b l e t o copper b e a r i n g hydroxide sludge leach solutions. By f a r t h e s i m p l e s t method f o r copper recovery from a c i d i c , aqueous media i s by cementation w i t h i r o n . The cementat i o n process i s described by t h e reaction: & .- Some sludge m a t e r i a l s c o n t a i n a s i g n i f i c a n t f r a c t i o n o f Ca, present e i t h e r from water d e i o n i z i n g system backwashing operations, o r from CaO used i n waste water treatment. When s u l f u r i c a c i d i s employed t o l e a c h a h i g h calcium bearing m a t e r i a l , gypsum (CaS04'2H20) w i l l s e l e c t i v e l y precipitate. The s o l u b i l i t y l i m i t f o r calcium i n t h e leach l i q u o r i s I f a minimum approximately 0.6 g / l i t e r . volume o f d i l u t i o n water i s added before s o l i d - l i q u i d separation, t h e t o t a l mass o f calcium r e j e c t e d i s increased and a f i n a l feed s o l u t i o n bearing 0.2 t o 0.4 g / l i t e r calcium can be produced. The gypsum p r e c i p i t a t e enhances f i l t e r a b i l i t y o f t h e leach residue. The gypsum bearing f i l t e r cake can e i t h e r be disposed, o r t r e a t e d t o recover pure gypsum which c o u l d then be c a l c i n e d t o produce p l a s t e r o f Paris. I n small s c a l e o p e r a t i o n s t h e cement a t i o n process i s c a r r i e d o u t by suspendi n g a permeable basket c o n t a i n i n g i r o n f i l i n g s i n t h e leach solution. Containment of t h e i r o n f i l i n g s i n t h i s f a s h i o n f a c i l i t a t e s r a p i d removal o f t h e cement copper product from t h e process s o l u t i o n a f t e r a 15 t o 30 minute r e t e n t i o n time. Copper cementation i s n o t w i t h o u t i t s drawbacks: 1. an impure copper i s produced which must f u r t h e r be r e f i n e d by smelting, 2. i r o n i n s o l y j i o n i s reduced t o t h e f e r r o u s (Fe ) s t a t e , and t h e r e f o r e must be o x i d i z e d Q j f o r e p r e c i p i t a t i o n as f e r r i c (Fe ) phosphate. Cementation o f copper w i t h i r o n powder was t e s t e d i n t h e l a b o r a t o r y t o remove copper from a mixed-metal e l e c t r o p l a t i n g sludge A l a r g e excess o f i r o n leach solution(2). = 10) was s l u r r i e d i n t o the powder (M /M mixed-metif s % u t i o n f o r one-half hour w i t h a A h i g h calcium bearing e l e c t r o p l a t i n g sludge m a t e r i a l was t r e a t e d w i t h s u l f u r i c A heavy a c i d t o leach t h e metal values. 339 and i s normally considered t o be a d e l e t e r i o u s i m p u r i t y because o f i t s low value. Two p r e c i p i t a t i o n techniques are c u r r e n t l y employed i n d u s t r i a l l y t o remove i r o n from process s o l u t i o n s . One technique i s t h e h i g h temperature synthesis o f f e r r i c hydroxide which y i e l d s a very h i g h surface area s o l i d t h a t i s d i f f i c u l t t o f i l t e r and adsorbs many i o n i c species from s o l u t i o n r e s u l t i n g i n heavy contamination o f t h e The second method i r o n bearing s o l i d . e n t a i l s t h e h i g h temperature f o r m a t i o n of a b a s i c hydrous a l k a l i s u l f a t e o f i r o n , a m i n e r a l named j a r o s i t e . This process req u i r e s near b o i l i n g s o l u t i o n temperatures f o r several hours t o promote acceptable r e a c t i o n k i n e t i c s , and w i l l reduce t h e i r o n c o n c e n t r a t i o n i n aqueous s o l u t i o n t o o n l y Also, i f chromic 0.2+50 0.4 g / l i t e r . ( C r ) c a t i o n s are present, they w i l l cop r e c i p i t a t e w i t h t h e i r o n and contaminate In t h e j a r o s i t e w i t h a valuable metal. s p i t e o f these drawbacks, both o f these i r o n removal processes c u r r e n t l y are practiced industrially. S t a r t i n g and s o l u t i o n temperature o f 57°C. ending s o l u t i o n c o n c e n t r a t i o n s o f metals a r e r e p o r t e d i n Table 3. I r o n powder i s o b v i o u s l y very e f f e c t i v e i n r a p i d l y removi n g copper from s o l u t i o n . The composition o f t h e cemented copper i s r e p o r t e d i n Table 4. The l a r g e f r a c t i o n o f i r o n contained i n t h i s m a t e r i a l i s i n d i c a t i v e o f having used a l a r g e excess o f i r o n f o r t h i s p a r t i c u l a r t e s t . Copper can s u c c e s s f u l l y be cemented from s o l u t i o n u s i n g much l e s s i r o n which would r e s u l t i n a product w i t h h i g h e r copper values. Another commercially p r a c t i c e d method of recovering copper from aqueous s o l u t i o n i s by s o l v e n t e x t r a c t i o n . T h i s technique invvJves t h e s e l e c t i v e t r a n s f e r o f c u p r i c (Cu ) ions from t h e aqueous l e a c h s o l u t i o n This i n t o an i m m i s c i b l e organic phase. organic phase c o n t a i n s a reagent which i s capable of forming s t a b l e organometallic complexes w i t h copper. A f t e r t h e organic i s loaded w i t h copper by c o n t a c t w i t h t h e s l i g h t l y a c i d i c feed s o l u t i o n , i t i s contacted w i t h a h i g h l y a c i d i c aqueous s o l u t i o n where t h e copper i s t r a n s f e r r e d from t h e o r g a n i c i n t o t h e a c i d i c s t r i p Copper i s recovered from t h e s t r i p phase. s o l u t i o n e i t h e r by copper s u l f a t e c r y s t a l l i z a t i o n o r electrowinning. This method produces a r e a d i l y s a l a b l e copper product, b u t i s i n h e r e n t l y more complex i n o p e r a t i o n than cementation. A s i g n i f i c a n t , r e c e n t development i n i r o n removal technology i s t h e p r e c i p i t a t i o n o f f e r r i c phosphate. F e r r i c phosphate prec i p i t a t i o n p r e v a i l s over t h e inadequacies o f t h e p r e s e n t l y employed i n d u s t r i a l techniques. Rapid f o r m a t i o n o f f e r r i c phosphate occurs i n a c i d i c aqueous media a t room temperature, r e q u i r i n g an hour o r l e s s t o reduce several grams per l i t e r o f i r o n t o l e s s The p r e c i p i t a t e d s o l i d s -than 0.1 g / l it e r . a r e spherical, which i s t h e geometric shape w i t h t h e lowest s p e c i f i c s u r f a c e area, and, t h e r e f o r e , t h e tendency t o adsorb contamina t i n g i o n s from s o l u t i o n i s much reduced. T h i s p a r t i c l e morphology a l s o promotes e x c e l l e n t f i l t e r a b i l i t y and easy washing o f t h e s o l i d s t o remove entrapped s o l u t i o n . F e r r i c phosphate o f remarkable p u r i t y , i.e., b e t t e r than 99% FeP04'2H 0 can be p r e c i p i t a t e d from a s o l u t i o n c o 6 t a i n i n g several grams p e r l i t e r each o f a x t r i e t J 2 0 f o$Qer , Cr i o g j c specjes inc]udinq,Ni ,-fn Cd , SO4 , NO , C 1 CrO+ , etc. A i t e r t h e i r o n phosphdte has been i l t e r e d from s o l u t i o n and washed, conversion t o f e r r i c hydroxide i s r e a d i l y accomplished by s l u r r y i n g t h e f e r r i c phosphate i n t o a h i g h pH, aqueous s o l u t i o n t h a t i s s l i g h t l y e l e v a t e d i n temperature. Conversion i s complete i n one t o one-and-one-half hours. T h i s process recovers t h e v a l u a b l e phosphate reagent i n a form usable f o r pH c o n t r o l and phosphate a d d i t i o n i n t h e l e a c h l i q u o r treatment c i r cuit. F e r r i c hydroxide produced i n t h i s manner f i1t e r s reasonably we1 1, much b e t t e r Extensive d a t a has a l s o been c o l l e c t e d on removing copper from mixed-metal e l e c t r o p l a t i n g hydroxide sludge l e a c h A Bell s o l u t i o n s by s o l v e n t extraction.(3) Engineering l a b o r a t o r y s i z e continuous s o l vent e x t r a c t i o n system was s e t up w i t h A t h r e e e x t r a c t i o n and two s t r i p c e l l s . s o l u t i o n w i t h 15 volume p e r c e n t LIX-622 d i s s o l v e d i n Kermac 470-B kerosene was used IS t h e o r g a n i c e x t r a c t i o n agent i n t h i s t e s t work. S t r i p l i q u o r was a s o l u t i o n o f 200 g j l i t e r s u l f u r i c a c i d and 30 t o 40 g / l i t e r copper. T h i s system was operated through eleven, 40 l i t e r batches o f mixedmetal leach s o l u t i o n s . Results o f extract i o n e f f i c i e n c i e s from t h i s s e r i e s o f t e s t s a r e presented i n Table 5 and i n d i c a t e v e r y good e x t r a c t i o n o f copper. Iron Precipitation An extremely i m p o r t a n t aspect o f t h i s treatment scheme as a whole i s t h e ease o f i r o n removal v i a p r e c i p i t a t i o n w i t h I r o n i s a common c o n s t i t u e n t o f phosphate. many h y d r o m e t a l l u r g i c a l process streams, 340 t h e r e s u l t i n g recovery o f phosphate i n t h e The chromic hyvery a l k a l i n e solution. d r o x i d e can be c a l c i n e d t o produce h i g h value chromic o x i d e ($5.50/lb.).(7) than does f e r r i c hydroxide which i s p r e c i p i t a t e d d i r e c t l y from s o l u t i o n . Extensive data have been c o l l e c t e d on t h e p r e c i p i t a t i o n o f f e r r i c phosphate from a wide v a r i e t y o f process s o l u t i o n s and under a wide range o f conditions. Details o f these experiments are presented i n o t h e r publications.(2,4) A summary o f t h e solub i l i t y o f f e r r i c phosphate as a f u n c t i o n of pH i s presented i n F i g u r e 1 ( t h e s o l i d l i n e s represent the s o l u b i l i t y o f s o l i d f e r r i c phosphate and f e r r i c hydroxide). It i s imperative t o note t h a t t h i s s o l u b i l i t y f u n c t i o n f o r f e r r i c phosphate i s b u t l i t t l e a f f e c t e d by a wide v a r i a t i o n i n s o l u t i o n compositions o r temperatures. F e r r i c phosphate p r e c i p i t a t e s e q u a l l y w e l l from s u l f a t e , c h l o r i d e , o r n i t r a t e systems, and t h e solub i l i t y i s n o t s i g n i f i c a n t l y a f f e c t e d by s o l u t i o n temperature. (5) Work t h u s f a r performed on c o n v e r t i n g f e r r i c phosphate t o f e r r i c hydroxide sugg e s t s t h a t h i g h pH and moderate s o l u t i o n temperatures a r e r e q u i r e d t o achieve c o w A summary o f p r e l i m i n a r y p l e t e conversion. data i s presented i n F i g u r e 2.(6) Chromium Treatment T r i v a l e n t chromium i s removed from s o l u t i o n by phosphate p r e c i p i t a t i o n i n a manner v e r y s i m i l a r t o i r o n removal. Unl i k e t h e s o l u b i l i t y o f f e r r i c phosphate, however, t h e s o l u b i l i t y o f chromium phosphate e x h i b i t s a s t r o n g dependence on solut i o n temperature, w i t h i n c r e a s i n g temperat u r e s promoting reduced s o l u b i l i t i e s . This p r o p e r t y i f 3 e x p l o i t e q 3 t o achieve a separaA t ambient tempert i o n o f Fe from C-r atures, i.e., 20°C. f e r r i c phosphate w i 11 p r e c i p i t a t e c l e a n l y i n t h e presence o f chromic c a t i o n s through t h e pH range 1.5 t o 2.1. A f t e r f e r r i c phosphate i s f i l t e r e d from s o l u t i o n , chromic phosphate can be made t o p r e c i p i t a t e through approximately t h e same pH range by h e a t i n g t h e s o l u t i o n t o 50 t o 60°C. The i n d i v i d u a l chromium phosphate p a r t i c l e s a r e s p h e r i c a l i n shape which r e s u l t s i n e x c e l l e n t f i l t e r a b i l i t y and minimum s u r f a c e a d s o r p t i o n o f o t h e r i o n i c species. . Some hydroxide sludge m a t e r i a l s c o n t a i n chromium i n t h e hexavalent state: sludge produced b y electrochemical machini n g i s one such example. I n t h i s case, i t i s economically advantageous t o recover chromium i n i t s o x i d i z e d chromate state. This i s e a s i l y accomplished by p r e c i p i t a t i o n o f l e a d chromate from m i l d l y a c i d i c Lead chromate s o l u t i o n s , i.e., pH > 4.0. f i l t e r s w e l l and can be leached w i t h s u l f u r i c a c i d t o produce l e a d s u l f a t e and chromic acid. The l e a d s u l f a t e so produced can be r e t u r n e d t o t h e l e a c h l i q u o r t r e a t ment c i r c u i t f o r recovery o f a d d i t i o n a l chromate. Chromic a c i d produced by t h i s methodology can be r e t u r n e d t o a p l a t i n g bath. S u f f i c i e n t data has thus f a r been generated t o c h a r a c t e r i z e chromium phosphate precipitation.(4) S o l u b i l i t y data f o r chromium phosphate p r e c i p i t a t i o n i s summari z e d i n t h e s t a b i l i t y diagram presented i n F i g u r e 3. S o l u b i l i t y data as a f u n c t i o n o f s o l u t i o n temperature i s presented i n F i g u r e 4 and c l e a r l y shows t h e i n v e r s e r e l a t i o n It i s between s o l u b i l i t y and temperature. e v i d e n t t h a t several grams p e r l i t e r chromium can be maintained i n s o l u t i o n t o pH l e v e l s g r e a t e r than four, w i t h low s o l u t i o n 'temperature. P r e c i p i t a t i o n o f l e a d chromate has been t e s t e d f o r removing chromate Because o f t h e g r e a t i o n s from s o l u t i o n . s o l u b i l i t y o f chromate as a f u n c t i o n o f pH, t h i s i s u s u a l l y t h e l a s t i o n t o be removed i n t h e leach s o l u t i o n t r e a t m e n t scheme. A leach s o l u t i o n produced from electrochemic a l machining sludge was t r e a t e d for+Eetal value recovery, w i t h 1.59 g / l i t e r C r remaining i n s o l u t i o n a f t e r f e r r i c phosphate and n i c k e l hydroxide p r e c i p i t a tion. Chromate c o n c e n t r a t i o n was reduced t o 0.3 p a r t s per m i l l i o n by adding a s l i g h t s t o i c h i o m e t r i c excess o f l e a d n i t r a t e and p r e c i p i t a t i n g a t a s o l u t i o n pH o f 6.1. Aluminum P r e c i p i t a t i o n The s o l u b i l i t y o f t r i v a l e n t aluminum i n aqueous s o l u t i o n i s e s s e n t i a l l y i d e n t i c a l t o t h a t o f chromium. Separation o f i r o n from an aluminum-chromium b e a r i n g s o l u t i o n can be accomplished by p r e c i p i t a t i o n o f f e r r i c phosphate a t low temperature. Heating t h e s o l u t i o n , a f t e r s o l i d l i q u i d s e p a r a t i o n t o remove f e r r i c phosphate A market f o r chromic phosphate e x i s t s i n t h e pigment i n d u s t r y . T h i s market may v e r y w e l l be e x p l o i t e d t o consume t h e chromic phosphate produced from hydroxide sludge m a t e r i a l s . An a t t r a c t i v e a l t e r n a t i v e t o t h e s a l e o f chromic phosphate i s t h e conversion t o chromic hydroxide w i t h 341 s o l i d s , r e s u l t s i n c o p r e c i p i t a t i o n o f aluminum and chromic phosphates. These two metals can be separated by leaching t h e mixed-metal phosphate, o x i d i z a t i o n o f chromic c a t i o n s t o chromate anions, and reprec i p i t a t i o n o f aluminum phosphate: t h i s t i m e w i t h o u t contamination by chromium. The chromate bearing f i l t r a t e which r e s u l t s from f i l t r a t i o n t o remove aluminum phosphate can be t r e a t e d by lead chromate prec i p i t a t i o n f o l l o w e d by chromic a c i d and lead s u l f a t e production. Separations by Valence t h e normal realm o f waste water treatment methods. A l l p r e c i p i t a t i o n s used i n t h e f o r e g o i n g metal recovery scheme r e q u i r e proper reagent a d d i t i o n , pH c o n t r o l , and c o n t r o l o f s o l u t i o n temperature. Indeed, these a r e c r i t e r i a v e r y common i n waste water treatment. The p r e c i p i t a t i o n techniques described h e r e i n a r e n o t equipment i n t e n s i v e . A s e r i e s o f s t i r r e d vessels w i t h a p p r o p r i a t e h e a t i n g c a p a b i l i t i e s , pH sensors and reagent a d d i t i o n equipment, coupled w i t h a f i l t r a t i o n system, i s e s s e n t i a l l y a l l t h a t i s r e q u i r e d t s implement t h i s technology on an i n d u s t r i a l scale. These types o f equipment a r e p r e v a l e n t i n t h e It i s certainly water treatment i n d u s t r y . f e a s i b l e t h a t some sludge generators can s u c c e s s f u l l y implement a t l e a s t some o f these p r e c i p i t a t i o n techniques w i t h v e r y l i t t l e o p e r a t i o n a l o r equipment change and minimal equipment a c q u i s i t i o n . The r e t u r n on i n vestment can begin immediately, because t h e volume o f sludge r e q u i r i n g hazardous waste greatly h a n d l i n g and d i s p o s a l can be v e r y reduced, reagents can be regenerated f o r use i n t h e process l i n e r e s u l t i n g i n reduced expenditure f o r raw m a t e r i a l s , o r marketable metal s a l t s can be produced. This, o f course, i s a l l i n a d d i t i o n t o t h e c o n s e r v a t i o n o f nonrenewable resources. The preceeding d i s c u s s i o n has f9cuseQ3 on s e p t 3 a t i n g t r i v a l e n t c a t i o n s (Fe , C r and A1 ) from each @her qpd from v a r i o u s d i v a l e n t c a t i o n s (Zn , N i ). C e r t a i n instances a r i s e where t h e i s o l a t i o n o f each individual t r i v a l e n t cation i s not desirable. Instead, o n l y removal o f contaminati n g t r i v a l e n t c a t i o n s from a predominately d i v a l e n t specie bearing s o l u % i o n i s d e s i r able. I n t h i s case, i r o n , chromium, and aluminum can be made t o c o p r e c i p i t a t e as phosphates by e l e v a t i n g t h e s o l u t i o n temp e r a t u r e t o 50 t o 60°C. T h i s accomplishes p u r i f i c a t i o n o f t h e aqueous s o l u t i o n i n a s i n g l e p r e c i p i t a t i o n and s o l i d - l i q u i d sepI f present i n o n l y a r a t i o n operation. small q u a n t i t i e s , t h e t r i v a l e n t , mixedAn EPA sponosored research program t o metal phosphate m a t e r i a l can be converted t e s t these p r e c i p i t a t i o n schemes on a p i l o t t o hydroxide t o recover t h e phosphate w i t h p l a n t s c a l e i s c u r r e n t l y underway a t t h e subsequent d i s p o s a l o f t h e hydroxides. The o u r i f i e d s o l u t i o n can be r e t u r n e d t o t h e .- Montana Colleqe o f M i n e r a l Science and Technology. A-wide v a r i e t y o f sludge maAn example o f t h i s a p p l i plating circuit. t e r i a l s have been c o l l e c t e d f o r treatment c a t i o n i s t h e recovery o f pure z i n c phosA f t e r analyses o f i n t h e t e s t system. phate from t h e i r o n - z i n c phosphate sludge chemical composition and m o i s t u r e content, t h a t t y p i c a l l y forms i n phosphatizing each sludge i s processed through t h e system tanks. i n a series o f r e p e t i t i v e tests. Data on elemental d i s t r i b u t i o n s a r e c o l l e c t e d and A mixed-metal leach s o l u t i o n was proc a r e f u l mass balances a r e maintained. +3 duced from electroplating+fludgT3and Process v a r i a b l e s a r e o p t i m i z e d t o y i e l d a t r e a t e d t o t 2 e c i p i t a t e Fe , C r , and A1 v e r y low c o n c e n t r a t i o n o f a p a r t i c u l a r metal from t h e Zn r i c h solution. Data f o r t h i s i n s o l u t i o n and s t i l l m a i n t a i n h i g h p u r i t y o f t e s t i s presented i n Table 6 and i l l u s t h e recovered metal product. Successful t r a t e s e x c e l l e n t separation o f t h e completion o f t h i s t e s t p r o j e c t should r e s u l t t r i v a l e n t c a t i o n s from t h e d i v a l e n t zinc. i n an industry-ready method f o r r e c o v e r i n g metal values from metal b e a r i n g hydroxide SUMMARY sludge m a t e r i a l s . A general overview f o r each o f t h e u n i t o p e r a t i o n s employed t o recover metal 1. Biswas, A. K., Davenport, W. G. values from e l e c t r o p l a t i n g hydroxide sludge E x t r a c t i v e M e t a l l u r g y of Copper, m a t e r i a l s has been given. These o p e r a t i o n s Pergamon Press, Oxford, 1976, p. 272. a r e e i t h e r a p p l i c a t i o n s o f w e l l developed commercial technology o r a r e simple 2. Dahnke, 0. R., Removal o f I r o n from selective precipitations. Overall the A c i d i c Aqueous Solutions. M. S. technology u t i l i z e d , except maybe f o r Thesis, Montana College o f M i n e r a l s o l v e n t e x t r a c t i o n , does n o t extend beyond 342 Science and Technology, May 1985, p. 137. 3. Metal Value Recovery Twidwell, L. G. from Metal Hdroxide Sludges, Report f o r EPA P r o j e c t s R-80930501 and R-80173601, Montana College o f Mtneral Science and Techology, November 1984, p. 290. 4. Dahnke, D. R., Twidwell, L. G., Robins, S e l e c t i v e I r o n Removal from Process S o l u t i o n s by Phosphate P r e c t p i t a t o n , C I M 1 6 t h Annual Hydrometa 11u r g i c a l Fleet ing, Toronto, Canada, October 1986. R. G. 5. Arthur, B. Recovery o f Metal Values from I r o n , Chromium, N i c k e l Solutions, M.S. Thesis, Montana College o f M i n e r a l Science and Technology, August 1986. 6. Nordwick, S. Conversion o f Phosphate S o l i d s I n t o Hydroxides, M.S. Thesis, Montana College o f M i n e r a l Science and Technology, August 1986. 7. Chemical Market Reporter, January 6, 1986, Schnell P u b l i s h i n g Company, Inc., New York, NY. 343 TABLE 1. ANALYSIS OF SLUDGE -Z Compos it ion Compound NaOH 8.43 A1 ( O W 3 4.63 S i (OH14 2.69 5.04 p04 8.24 s04 c1 0.36 Ca(OHI2 20.49 W O H1 16.07 Fe( OH l3 5.13 Zn(OH 18.00 TABLE 2. ANALYSIS OF LEACH SOLUTION Compound Concentration g/1 i t e r 1 Fe 0.660 cu 0.024 Zn 5.304 Cr 2.959 A1 1.187 Ca 0.692 P 0.883 344 TABLE 3. SOLUTION ANALYSES FOR CEMENTATION OF COPPER Concentrations ( g / l i t e r ) Fe cu Zn Cr Ni A1 Ca Na Cd 0.847 3.596 3.365 5.606 6.848 0.038 0.232 0.576 3.604 11.141 0.032 3.257 5.397 6.943 0.037 0.236 0.652 3.518 Starting Final TABLE 4. CEMENT COPPER COMPOSITION Z Composition Fe cu Zn Cr 75.1 22.4 0.70 1.31 345 Cd 0.54 TABLE 5. SUMMARY OF CONTINUOUS COPPER EXTRACTION: ELEVEN DAY LONG TERM O R G A N I C EXPOSURE TEST RESULTS. ~~ Sample No. Condition Copper E x t r a c t i o n From Leach S o l u t i o n Copper Concentration ( g p l ) I n i t i a1 3458 3474 Starting Solution F i r s t Day R a f f i n a t e 2.750 3482 3493 Starting Solution Second Day R a f f . 3.130 3501 -B 3509 Starting Solution T h i r d Day R a f f . 2.697 3519 3533 Starting Solution F o u r t h Day Raff. 3.332 3542 3548 S t a r t i n g S o l u t on F i f t h Day R a f f 2.600 3552 3567 S t a r t i n g S o l u t on S i x t h Day Raff 0.835 3606 3613 Starting Solution Seventh Day Raff. 1.035 3619 3631 Starting Solution E i g h t Day Raff. 2.045 3639 3643 S t a r t i n g Sol u t on N i n t h Day R a f f 1.812 3657 3664 S t a r t i n g S o l u t on Tenth Day R a f f . 3670 3703 S t a r t i n g Sol u t i on Eleventh Day Raff. Copper E x t r a c t e d Final 0.054 98.0 0.062 98. o 0.106 96.1 0.088 97.4 0.039 98.5 0.056 93.3 0.033 96.9 0.027 98.7 0.073 97.0 2.026 0.043 96.0 2.225 0.049 97.8 -- 346 (%I TABLE 6. SOLUTION ANALYSIS FOR PRECIPITATION OF Fe+3, Cr+3, AND A l + 3 PHOSPHATE Concentrations g/1 it e r Fe Cr A1 Zn P Starting Solution pH = 2.07 0.118 0.694 0.182 3.735 1.151 Ending S o l u t i o n pH = 2.48 0.048 0.073 0.016 3.760 0.684 347 0 0 1 I\ ' 2 3 4 5 6 7 8 9 1 0 11 I I I 1 I I I I 1 2 3 a 0. 4 W LI Q 5 6 7 8 1 A 348 100 rH = 12. so c : a0 *= 11, 50oc pH bp *FwPO~.~H~O SLURRIED (S) IN PH c CONTROLLP) SYSTEM *P .to WT. v) L 0 V tsoc COM3ITIONS 60 0 al > c = I t . 'IL SOL1115 40 20 0 0 60 120 180 Time, M i n . 349 240 300 PH 0 1 2 3 4 5 I I I I I I ' I I I I I I 6 7 8 9 1 0 1 1 I I I I I I I I n a L u a FlGUR€ 3 . O R a M I U M PHCIBRIATE STABILITY DIAGRAM OlROMILM-PHO.CHATE.-WATliRSYSTEM. 3 50 FOR THE 4 3 fn t 2 U 1 0 S o l u t i o n pH .FIGURE 4 . INFLLlENCE OF TEWRATLIRE ON CHI?CMILIM FROM A MIXED =TAL PHOSPHATE PRECIPITATION SOLVTION. 351 I I EPA/600/9-86/022 August 1986 LAND DISPOSAL, REMEDIAL ACTION, I N C I N E R A T I O N AND TREATMENT OF HAZARDOUS WASTE Proceedings o f t h e T w e l f t h Annual Research Symposium a t C i n c i n n a t i , Ohio, A p r i l 21-23, 1986 Sponsored by t h e U.S. EPA, O f f i c e o f Research & Development Hazardous Waste Engineering Research Laboratory C i n c i n n a t i , OH 45268 Edison, NJ 08837 Coordinated by: JACA Corp. F o r t Washington, PA 19034 .- Contract No. 68-03-3252 Project Officers : Harry M. Freeman N a m i P. Barkley C i n c i n n a t i , OH 45268 HAZARDOUS WASTE ENGINEERING RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OH 45268
© Copyright 2026 Paperzz