Math 151 Section 2.3 Limit Laws Limit Laws If lim f ( x ) and lim g ( x) both exist, then the following hold true. x!a x!a 1. lim "$ f ( x) ± g ( x)%' = lim f ( x) ± lim g ( x) & x!a x!a # x!a 2. lim "$ cf ( x)%' = c lim f ( x) for any constant c. & x!a # x!a 3. lim "$ f ( x) g ( x)%' = lim f ( x) ( lim g ( x) & x!a x!a # x!a " f ( x) % lim f ( x) f ( x) $ ' = x!a lim 4. if lim g ( x) " 0 . If g(x) = 0, try to simplify . $ ' x!a g x x!a g ( x) g ( x) $# ( ) '& lim x!a ( ) 5. lim ( f ( x)) = lim f ( x) n x!a x!a n 6. lim n f ( x) = n lim f ( x) . If n is even, then it must be true that lim f ( x) > 0 . x!a x!a x!a Example: Evaluate the following limits. If a limit does not exist, support your answer by evaluating the left- and right-hand limits. A. lim ( x 2 + x +1) 5 x!"2 B. lim" 16 " x 2 x!4 Math 151 x4 + x2 " 6 x!1 x 4 + 2x + 3 C. lim x 2 " x "12 x!"3 x+3 D. lim E. lim x!9 F. lim h!0 G. lim x!2 x 2 "81 x "3 3+ h " 3 h x"4 ( x " 2) 2 Math 151 # 1 2 &( (( H. lim %% " 2 x!1 % $ x "1 x "1(' I. lim x!4 x"4 x"4 # x + 3 &( % (( J. lim %% 2 x!"3% x + 3x ( (' %$ # & %% 1 1 (( K. lim" % " (( x!0 % %$ x x (' Math 151 # % 4 + 5x if x < !1 % % %x if !1" x <1 L. lim f ( x) and lim f ( x ) for f ( x) = % $ x!"1 x!1 % 3 if x = 1 % % % % &4 ! x if x >1 The Squeeze Theorem If f ( x) ! g ( x) ! h( x) for all x in an open interval containing x = a (except possibly at a) and lim f ( x) = lim h( x) = L then lim g ( x) = L. x!a x!a x!a Example: Given 3x ! f ( x) ! x 3 + 2 for all x in the interval (0, 3), find lim f ( x). x!1 " 1% Example: Find lim x 4 sin $$ '''. $# x '& x!0
© Copyright 2025 Paperzz