4.5 Dilations

Geometry
4.5 Dilations
4.5 Warm Up Day 1
Use the graph to find the indicated length.
1. Find the length of
2. Find the length of
๐ท๐ธ and ๐ธ๐น
๐ต๐ถ and ๐ด๐ถ
November 24, 2015
4.5 Dilations
4.5 Warm Up Day 2
Plot the points in a coordinate plane. Then determine
whether the quadrilaterals are congruent.
1. A(-3, 4), B(-3, 7), C(3, -4), D(3, -1)
2. E(7, -2), F(2, -2), G(3, -4), H(5, -4)
3. I(9, 2), J(0, 2), K(6, 9), L(6, 2)
4. M(7, -9), N(7, 0), P(8, -3), Q(-1, -3)
November 24, 2015
4.5 Dilations
4.5 Essential Question
What does it mean to dilate a figure?
November 24, 2015
4.5 Dilations
Goals
๏ฎ
๏ฎ
Identify Dilations
Make drawings using dilations.
November 24, 2015
4.5 Dilations
Rigid Transformations
๏ฎ
Rotations
๏ฎ
๏ฎ
๏ฎ
๏ฎ
November 24, 2015
Translations
These were isometries:
The pre-image and the image were congruent.
4.5 Dilations
Dilation
๏ฎ
๏ฎ
Dilations are non-rigid transformations.
The pre-image and image are similar, but
not congruent.
November 24, 2015
4.5 Dilations
November 24, 2015
4.5 Dilations
Dilation
rgemen
Enla
November 24, 2015
4.5 Dilations
t
Dilation
Reduction
November 24, 2015
4.5 Dilations
Dilation Definition
A dilation with center C and scale factor k is a transformation that maps
every point P to a point Pโ€™ so that the following properties are true:
1. If P is not the center point C, then the image point Pโ€™ lies on CP. The
scale factor k is an integer such that
k ๏‚น 1 and
CP'
k=
CP
2. If P is the center point C, then P = Pโ€™.
3. The dilation is a reduction if 0 < |k| < 1, and an enlargement if |k| > 1.
November 24, 2015
4.5 Dilations
Dilation
R
S
C
Center of Dilation
November 24, 2015
T
4.5 Dilations
Dilation
2CR
R๏‚ข
CR
R
S
CR
C
Center of Dilation
November 24, 2015
T
4.5 Dilations
Dilation
2CR
R
CR
CS
R๏‚ข
CR
2CS
S
CS
C
Center of Dilation
November 24, 2015
T
4.5 Dilations
S๏‚ข
Dilation
2CR
R
CR
C
CT
Center of Dilation
CR
2CS
S
CS
T
2CT
November 24, 2015
R๏‚ข
CS
CT
T๏‚ข
4.5 Dilations
S๏‚ข
Dilation
๏ฒRST ~ ๏ฒR๏‚ขS๏‚ขT๏‚ข
2CR
R
CR
C
CT
Center of Dilation
CR
2CS
S
CS
T
2CT
November 24, 2015
R๏‚ข
CS
CT
T๏‚ข
4.5 Dilations
S๏‚ข
Enlargement
Dilation
2CR
R
CR
C
CT
Center of Dilation
R๏‚ข
CR
2CS
S
CS
T
2CT
CS
S๏‚ข
CT
T๏‚ข
CR ' CS ' CT ' 2
๏€ฝ
๏€ฝ
๏€ฝ =k Scale Factor
CR CS CT 1
November 24, 2015
4.5 Dilations
Example 1
Reduction
What type of dilation is this?
G
F
Fโ€™
Gโ€™
C
Kโ€™
Hโ€™
H
K
November 24, 2015
4.5 Dilations
F ' G ' 15 1
k๏€ฝ
๏€ฝ
๏€ฝ
FG
45 3
F ' K ' 12 1
k๏€ฝ
๏€ฝ
๏€ฝ
FK
36
3
G
Example 1
What is the scale factor?
45
F
Fโ€™
36
k<1
C
12
Reduction
Kโ€™
Hโ€™
H
K
November 24, 2015
Notice:
15 Gโ€™
4.5 Dilations
Example 2
Find the scale factor of the dilation.
Then tell whether the dilation is a
reduction or an enlargement
๐ถ๐‘ƒโ€ฒ
๐‘˜=
๐ถ๐‘ƒ
12
๐‘˜=
8
3
๐‘˜=
2
November 24, 2015
4.5 Dilations
Notice:
k>1
Enlarge
ment
Your Turn
Find the scale factor of the dilation. Then
tell whether the dilation is a reduction or
an enlargement
November 24, 2015
4.5 Dilations
๐ถ๐‘ƒโ€ฒ
๐‘˜=
๐ถ๐‘ƒ Notice:
18
๐‘˜=
k<1
30
3 Reduction
๐‘˜=
5
Remember:
๏ฎ
๏ฎ
๏ฎ
November 24, 2015
The scale factor k is
Image Length
S. F. =
Pre โˆ’ image Length
If 0 < |k| < 1 itโ€™s a reduction.
If |k| > 1 itโ€™s an enlargement.
4.5 Dilations
Coordinate Geometry
๏ฎ
Use the origin (0, 0) as the center of dilation.
The image of P(x, y) is Pโ€™(kx, ky).
Notation: P(x, y) ๏‚ฎ Pโ€™(kx, ky).
Read: โ€œP maps to P primeโ€
๏ฎ
You need graph paper, a ruler, pencil.
๏ฎ
๏ฎ
๏ฎ
November 24, 2015
4.5 Dilations
Example 3
Graph ๏ฒABC with
A(1, 1), B(3, 6), C(5, 4).
B
C
A
November 24, 2015
4.5 Dilations
Example 3
Bโ€™
Using a scale factor of k = 2, locate
points Aโ€™, Bโ€™, and Cโ€™. P(x, y) ๏‚ฎ Pโ€™(kx, ky).
Cโ€™
๐‘จ(๐Ÿ, ๐Ÿ) ๏‚ฎ ๐‘จโ€™(๐Ÿ ๏‚ด ๐Ÿ, ๐Ÿ ๏‚ด ๐Ÿ) = ๐‘จโ€™(๐Ÿ, ๐Ÿ)
๐‘ฉ(๐Ÿ‘, ๐Ÿ”) ๏‚ฎ ๐‘ฉโ€™(๐Ÿ ๏‚ด ๐Ÿ‘, ๐Ÿ ๏‚ด ๐Ÿ”) = ๐‘ฉโ€™(๐Ÿ”, ๐Ÿ๐Ÿ)
๐‘ช(๐Ÿ“, ๐Ÿ’) ๏‚ฎ ๐‘ชโ€™(๐Ÿ ๏‚ด ๐Ÿ“, ๐Ÿ ๏‚ด ๐Ÿ’) = ๐‘ชโ€™(๐Ÿ๐ŸŽ, ๐Ÿ–)
B
C
A
November 24, 2015
4.5 Dilations
Aโ€™
Example 3
Bโ€™
Draw ๏ฒA๏‚ขB๏‚ขC๏‚ข.
Cโ€™
B
C
A
November 24, 2015
Aโ€™
4.5 Dilations
Example 3
Bโ€™
Youโ€™re done.
Cโ€™
Notice that rays drawn
from the center of
dilation (the origin)
through every preimage
point also passes through
the image point.
B
C
A
November 24, 2015
Aโ€™
4.5 Dilations
Example 4
Graph quad. KLMN with K(โˆ’4, 8), L(0, 8), M(4, 4),
and N(โˆ’4, โˆ’4) and its image after a dilation with a
3
scale factor of
4
x, y โ†’
3 3
x, y
4 4
K(โˆ’4, 8) โ†’
Kโ€ฒ(โˆ’3, 6)
L(0, 8) โ†’
Lโ€ฒ(0, 6)
M(4, 4) โ†’
Mโ€ฒ(3, 3)
N(โˆ’4, โˆ’4) โ†’
Nโ€ฒ(โˆ’3, โˆ’3)
November 24, 2015
4.5 Dilations
Your Turn
T(0, 12)
Draw RSTV
with
R(0, 0)
S(๏€ญ6, 3)
T(0, 12)
S(-6, 3)
V(6, 3)
V(6, 3)
November 24, 2015
4.5 Dilations
R(0, 0)
Your Turn
T(0, 12)
Draw Rโ€™Sโ€™Tโ€™Vโ€™
using a scale
factor of k = 1/3.
Tโ€™(0, 4)
S(-6, 3)
V(6, 3)
Sโ€™(-2, 1)
November 24, 2015
4.5 Dilations
Vโ€™(2, 1)
R(0, 0)Rโ€™(0, 0)
Your Turn
T(0, 12)
Rโ€™Sโ€™Tโ€™Vโ€™ is a
reduction.
Tโ€™(0, 4)
S(-6, 3)
V(6, 3)
Sโ€™(-2, 1)
November 24, 2015
4.5 Dilations
Vโ€™(2, 1)
R(0, 0)Rโ€™(0, 0)
Negative Scale Factor
In the coordinate plane, you can have
scale factors that are negative numbers.
When this occurs, the figure is dilated and
rotates 180°.
The following is still trueโ€ฆ
๏ฌ If 0 < |k| < 1 itโ€™s a reduction.
๏ฌ If |k| > 1 itโ€™s an enlargement.
November 24, 2015
4.5 Dilations
Example 5
Graph โ–ณFGH with vertices F(โˆ’4, โˆ’2), G(โˆ’2, 4),
and H(โˆ’2, โˆ’2) and its image after a dilation with
1
a scale factor of โˆ’
2
x, y โ†’
1
1
โˆ’2x, โˆ’2y
F(โˆ’4, โˆ’2) โ†’
Fโ€ฒ(2, 1)
G(โˆ’2, 4) โ†’
Gโ€ฒ(1, โˆ’2)
H(โˆ’2, โˆ’2) โ†’
Hโ€ฒ(1, 1)
November 24, 2015
4.5 Dilations
Your Turn
Graph โ–ณPQR with vertices P(1, 2), Q(3, 1), and R(1,
โˆ’3) and its image after a dilation with a scale factor of
โˆ’2.
x, y โ†’ โˆ’2x, โˆ’2y
P(1, 2) โ†’
Pโ€™ (โˆ’2, โˆ’4)
Q(3, 1) โ†’
Qโ€™ (โˆ’6, โˆ’2)
R(1, โˆ’3) โ†’
Rโ€™ (โˆ’2, 6)
November 24, 2015
4.5 Dilations
Example 6
You are making your own photo stickers. Your photo is 4
inches by 4 inches. The image on the stickers is 1.1 inches by
1.1 inches. What is the scale factor of this dilation?
Image Length
S. F. =
Pre โˆ’ image Length
1.1
S. F. =
4
11
S. F. =
40
November 24, 2015
4.5 Dilations
Your Turn
An optometrist dilates the pupils
of a patientโ€™s eyes to get a
better look at the back of the
eyes. A pupil dilates from 4.5
millimeters to 8 millimeters.
What is the scale factor of this
dilation?
November 24, 2015
Image Length
S. F. =
Pre โˆ’ image Length
8
80
S. F. =
=
4.5
45
16
S. F. =
9
4.5 Dilations
Example 7
You are using a magnifying
glass that shows the image
of an object that is six
times the objectโ€™s actual
size. Determine the length
of the image of the spider
seen through the
magnifying glass.
November 24, 2015
Image Length
S. F. =
Pre โˆ’ image Length
x
6=
1.5
x = 1.5 (6)
x = 9 cm
4.5 Dilations
Your Turn
You are using a magnifying
glass that shows the image of
an object that is six times the
objectโ€™s actual size. The
image of a spider is shown at
the left. Find the actual
length of the spider.
Image Length
S. F. =
Pre โˆ’ image Length
12.6
6=
x
6
12.6
=
1
x
6x = 12.6
x = 2.1 cm
November 24, 2015
4.5 Dilations
Summary
๏ฎ
๏ฎ
๏ฎ
๏ฎ
๏ฎ
A dilation creates similar figures.
A dilation can be a reduction or an
enlargement.
If the scale factor is less than one, itโ€™s a
reduction, and if the scale factor is greater than
one itโ€™s an enlargement.
A negative scale factor is the same as a dilation
with a 180° rotation.
The scale factor is found using S. F. =
November 24, 2015
4.5 Dilations
Image
Preโˆ’image
Assignment
November 24, 2015
4.5 Dilations