5 3 D) (x + 2x) (4x 8) 2 h 2 15x4 x4 +2x 2 5x 2 + i 2 A)ex (36x ln (x) + x6 ) B)e3x (36x ln (x) + x ) 2 2(x) = (x 6 17)6 C)f 3xQuiz 17 4 D)f (x) 3x2 = (x A)-6 B)-6 1: C) 16 Example D)- 61 C)e Math 1431 6 LAB session 10 (36x ln (x ) + x ) D)e 3 5x) 6 (x ln (x) + x ) p ! 3 5 sin (2x) 5 sin (2x) arcsin Find the exact value A)5 cos (2x)e B)10 cos (x)e 2 ✓ ✓ ◆◆ 8⇡ sin (2x) C)10 cos (2x)e5 sin (2x) D)10 cos (2x)e arccos sin 3i h 4 15x 2 ✓ ◆◆ A) (x5 + 2x)3 (4x 8)2 x✓ 5 +2x + x 2 1 sin 4 arccos 2 15x4 2 B) x5 +2x + x 2 i f (x)2 h=15x (x55 + 2x)23 (4x 8)2 (x45 ++2x)23 (4x D) (x + 2x) (4x f (x) 8)2 =x15x 4 +2x 5x 2 8)2 f (x) = (x5 + 2x)3 (4x 8)2 C) (x5 + 2x)3 (4x 5 3 8) + 3x 2 h 2 i 2 A)ex (36x ln (x) + x6 ) 2 x5 +2x B)e3x (36x ln (x) + x6 ) C)e3x (36x ln (x6 ) + x6 ) 2 D)e3x (x ln (x) + x6 ) 9 p ! 3 arcsin 2 Example 2: ✓ ✓ ◆◆ 8⇡ Find the exact value arccos sin 3 ✓ ✓ ◆◆ 1 sin 4 arccos 2 f (x) = (x5 + 2x)3 (4x 8)2 f (x) = (x5 + 2x)3 (4x 8)2 f (x) = (x5 + 2x)3 (4x 8)2 9 8⇡ 3 ✓ ✓ ◆◆ 1 sin 4 arccos 2 arccos sin Example 3: Find the exact value (x) = (x 17)2 4 3 D)f (x) (x(x 5 5x) f (x)= = + 2x)3 (4x B)-6 C) 16 D)- 61 cos (2x)e5 sin (2x) f (x) = (x5 + 2x)3 (4x 8)2 B)10 cos (x)e5 sin (2x) 5 3 f (x) (x sin+(2x) 2x) (4x D)10 cos= (2x)e h i 15x4 2 2 8) x5 +2x + x 2 17)2 D)f (x) = (x4 5x)3 0 cos (2x)e5 sin (2x) x5 + 2x)3 (4x C)f (x) = (x 15x4 2 5 +2x + x 2 A)-6 B)-6 8)2 8)2 9 C) 16h D)- 61 i y = ln (arcsin (4x)) 15x5 2 x5 + 2x)3 (4x 5 sin8)(2x) + 3x2 2 5 sin (2x) x5 +2x A)5 cos (2x)e B)10 cos (x)e h i 15x4 2 5 3 2 y = arctan (ln (3x 8)) x + 2x) (4x 5 sin 8) + 4 C)10 cos (2x)e (2x)x +2x D)105x cos2(2x)esin (2x) h i ⇣p ⌘ 15x4 2 5 3 2 8) 2 +2x + x y2 = arcsin 2A) (x + 2x) (4x 3 2x2 (36x ln (x) + x6 ) B)e3xx5(36x ln (x) + x6 ) 4 2 B) x15x 5 +2x +6x 2 6 x2 (36x ln (x ) + x ) ⇣ ⌘ x D)e3x (x ln (x)p+ x6 ) 2 + 5 arcsin h i y = 64 x 15x5 2 5 C) (x5Question + 2x)3 (4x 8) + 3x2 2 #: x5 +2x ✓ ◆yi = ln (arcsin ✓ (4x)) ◆ h 10x 1 4 15x 3 e D) (x5Find + 2x) (4xvalue 8)2 arccos + 5x2 2 exact x4 +2x y = arcsin 2 10 ✓ ✓ ◆◆ y11⇡ = (ln (3x 8)) ⇡ 2⇡ ⇡3x2 ⇡ arctan 6arcsin 6 x2 A) B) C) D) cos A)e (36x6ln (x) + 3x ) B)e3 (36x 3ln 4 (x) + x ) ⇣p ⌘ ✓ ✓ ◆◆ 2 2 2 ⇡ ln (x6 ) 2⇡ ⇡ 3x (xyln1 ⇡ C)e3x A) (36x + x6 ) C) D)e (x) + x6 ) = arcsin 3 2x B) D) 6 3 sin 4 arccos 3 4 2 ⇣x⌘ ✓ ◆ p 2 y1 (3x = +164 y = tanarccos 2) x + 5 arcsin 5 2 Question #: ✓ ✓ ◆◆ ✓ 10x ◆ 1 11⇡ e tan (5x cos +y 6) Find exact valuey =arcsin = arcsin 3 10 ✓ ✓ ◆◆ 1 1 ⇡ 2⇡ y = e⇡5x arcsin⇡(7x) A) 6 B) 3 C) D) sin 4 arccos 4 5 3 2 A) ⇡6 B) 2⇡ 3 2 ⇡ C) D)1 ⇡4 + 2) y= 3 tan (3x 9 y = tan 1 (5x + 6) 1 y = e5x arcsin (7x) 5 arcsin cos i h 3 4 2 8)2 x15x + 5 +2x x 2 ✓ ◆◆ ✓ Example 4: 1 sin 4 arccos Find derivative for 2 all functions below h i 15x5 2 2 8) yx= 5 +2x tan+ 13x(3x 2 + 2) h i 15x4 2 2 8) x4 +2x + 5x 2 y = tan 1 (5x + 6) 6 ) x 2 B)e13x 5x (36x ln (x) + x6 ) y = e arcsin (7x) 5 2 6 + x ) D)e3x (x ln (x) + x6 ) p ! 3 2 ✓ ✓ ◆◆ 8⇡ arccos sin 3 ✓ ✓ ◆◆ 1 sin 4 arccos 2 9 arcsin y = tan (3x + 2) 1 y = 7e2x arcsin (3x) y = ln (arctan (6x + 15)) 9 y = 7e arcsin (3x) y = ln (arctan (6x + 15)) 9 y = arctan (ln (3x y = arcsin y= p 64 ⇣p 3 8)) 2x2 x2 + 5 arcsin ✓ e10x y = arcsin 10 ◆ ⌘ ⇣x⌘ 5 y = arctan (ln (3x y = arcsin y= p ⇣p 8)) 2x2 3 x2 + 5 arcsin 64 y = arcsin ✓ e10x 10 ◆ y = arctan (ln (3x y = arcsin y= p 64 ⇣p 3 ⌘ ⇣x⌘ 5 8)) 2x2 x2 + 5 arcsin y = arcsin 10 ✓ e10x 10 ◆ ⌘ ⇣x⌘ 5 5 3 (x + 2x) (4x 8) x5 +2x x 2 4 15x 2 + 4 x +2x 5x 2 5 2 ✓ 10x ◆ + x2 2 e y = arcsin i 6 10h 3x52 6 x2 e(x5(36x ln (x) + ) B)e (36x ln (x) + ) 15x 2 3 2 x x + 2x) (4x 8) x5 +2x + 3x 2 2 h i 3x2 4 e3x5(36x ln3(x6 ) + x6 ) 2 D)e (x ln2 (x) + x6 ) 15x (x + 2x) (4x 8) x4 +2x + 5x 2 15x4 x5 +2x ✓ ◆ 1 2 2 arccos 6 ex (36x ln (x) + x6 ) B)e3x (36x ln 2 (x) + x ) ✓ ✓ ◆◆ 11⇡ 6 3x2 6 3x2 e (36x ln (x ) + x ) arcsin D)e cos (x ln (x) + x6 ) 3 ✓ ✓ ◆◆ ✓ 1◆ = ln (arcsin 1 (4x)) sin 4y arccos arccos 2 y = ln (arcsin (4x)) y = arctan (ln (3x y = arcsin y= p 64 ⇣p B) 2⇡ 3 C) ⇡3 D) ⇡4 2 y = arctan (ln (3x 8)) (4x)) y= (arcsin A) ⇡6 B) 2⇡ C) ⇡3 D) ⇡4 ✓ln ◆◆ 3 y = tan✓ 1 (3x + 2) 11⇡ ⌘ arcsin cos⇣p 5 1 y = arcsin 3 3 2x2 A) 25x2 +60x+36 B) 25x2 +60x+37 y = arctan (ln (3x 8)) y =✓ tan 1 (5x + ✓ 6)◆◆⇣ x ⌘ p 1 5 1⇣ C) ⌘ D) 25x2 +60x+37 y = 64 x2 + 5 arcsin 2 +60x+36 25x p5 sin 4 arccos 2x2 1 5xy = arcsin ✓ 2 ◆ 3 Question #: Find derivative 10x y = e arcsin (7x) 5y = arcsin e ⇣x⌘ y = tanp1 (3x 10 +2 2) = 64 x + 5 arcsin A) ⇡6 B) 2⇡ C) ⇡3 D) ⇡y 3 4 5 A) ⇡6 B) 2⇡ C) ⇡3 yD) =⇡4 tan9 1 (5x + 6)✓ e10x ◆ 3 y = arcsin Question 5 #: 1 10 A) 2 B) 2 25x +60x+36 ⇡ Find A) C) 6 25x +60x+37 1 5x⇡ e 4 arcsin (7x) D) 5 25x +60x+37 2⇡ y ⇡3=5 derivative C) 1 B) 3 D) 2 2 25x +60x+36 2⇡ ⇡ 5x p e⇡ A)e⇡5x arcsin +C) arcsin (7x) + 5p17e 49x A) B) (7x) D)B)e 1 349x 6 3 4 5x 5x 2 C)ex arcsin 5 (7x) + A) 25x2 +60x+36 1 C) 25x2 +60x+36 5x p7e 5 1 49x2 5x 1D)e 9 arcsin (7x) + B) 25x2 +60x+37 2 5x p7e 5 1+49x2 5 D) 25x2 +60x+37 10 5x p e 1 49x2 5x B)e5x arcsin (7x) + p7e 5 1 49x2 x p7e C)e arcsin (7x) + D)e5x arcsin (7x) + y = Find derivative 5ln1(arcsin 49x2 (4x)) p7e 5 1+49x2 5x A)e arcsin (7x) + Question #: 5x A) arcsin (4x)4p1 y = arctan (ln (3x C) arcsin (x)4p1 16x2 16x2 B) arcsin (4x)1p1 ⇣p 4p ⌘ 2 D) arcsin (4x) 1+16x y = arcsin y= p 8))16x2 2x2 3 10 64 x2 + 5 arcsin ✓ 10x ◆ ⇣x⌘ 5 5x 2x2 x2 + 5 arcsin y = arcsin A) ⇡6 3 8)) 10 ✓ e10x 10 ◆ ⌘ ⇣x⌘ 5
© Copyright 2026 Paperzz