26. [Surface Area] continues on page 306 Skill 26.1 • • • Calculating the surface area of rectangular prisms and cubes by using nets (1). Find any unknown side lengths. Calculate the area of each face as shown on the net. Hint: Rectangular prisms have 6 faces of 3 different sizes: base and top (2) front and back (2) other faces (2) Add together the area of all faces. Hints: Sides marked with a dash ( ) are of equal length. Sides marked with two dashes ( ) are of equal length etc. A. Area of square face = 5 units × 5 units = 25 sq. units A cube has S.A. = 25 × 6 6 identical faces = 150 sq. units Q. Find the surface area of the cube by finding the area of its net. 5 B a c k B a c k F r o n t 6 Ba 30 F r o n t To 3 Top b) Find the surface area of the cube by finding the area of its net. p Find the surface area of the rectangular prism by finding the area of its net. se a) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Base 20 Area: base & top = 2 × 20 × 3 = 120 ...................................................................................................................... Area: front & back = 2 × 30 × 3 = 180 ...................................................................................................................... Area of 1 face = S.A. = = ...................................................................................................................... ........................................................................ sq. units Area: 2 other faces = 2 × 30 × 20 = 1200 ...................................................................................................................... S.A. = 120 + 180 + 1200 = ........................................................................ page 305 sq. units www.mathsmate.net © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 305 Skill 26.1 c) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of rectangular prisms and cubes by using nets (2). Find the surface area of the square prism by finding the area of its net. d) Find the surface area of the rectangular prism by finding the area of its net. Back 3 Top Top 8 Lf aa tc ee r a Base l Base Top Base Front 12 20 5 Area: base & top = Area: base & top = ...................................................................................................................... ...................................................................................................................... Area: 4 lateral faces = Area: front & back = ...................................................................................................................... S.A. = = ........................................................................ ...................................................................................................................... sq. units Area: 2 other faces = ...................................................................................................................... S.A. = = ........................................................................ e) Find the surface area of the square prism by finding the area of its net. f) sq. units Find the surface area of the rectangular prism by finding the area of its net. 4 16 42 7 30 ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... S.A. = = ........................................................................ sq. units ...................................................................................................................... S.A. = = ........................................................................ page 306 www.mathsmate.net sq. units © Math’s Mate Mauve/Lime Skill Builder 26 Skill 26.2 • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of rectangular prisms. Substitute known values into the formula: rectangular prism h S.A. = 2(length × width) + 2(length × height) + 2(width × height) S.A. = 2lw + 2lh + 2wh = 2(lw + lh + wh) w l cube S.A. = 6(length × length) = 6l 2 Q. Lewis wants to make a box, with a lid, for his card collection. The box needs a base of 11 cm by 20 cm and must be 12 cm high. How much wood does Lewis need? A. S.A. = 2(lw + lh + wh) where l = 20, w = 11 and h = 12 = 2 × (20 × 22 + 20 × 12 + 11 × 12) = 2 × (220 + 240 + 132) = 2 × 592 = 1184 cm 2 The locker block needs to be resurfaced. What is the surface area of this rectangular prism disregarding its base? b) Zoe’s mattress was torn in removal. What is the minimum amount of mattress ticking needed to re-cover the mattress? a) 1.5 yd 0.5 yd 190 cm d 2y m 0c 55 cm 11 Subtract 1 base area S.A. = lw + 2lh + 2wh where l = 110, w = 55 and h = 190 ...................................................................................................................... S.A. = 2(lw + lh + wh) ...................................................................................................................... = 110 × 55 + 2 × (110 × 190) + 2 × (55 × 190) = ...................................................................................................................... ...................................................................................................................... = 6050 + 2 × 20,900 + 2 × 10,450 ...................................................................................................................... = 6050 + 41,800 + 20,900 = .......................................................................... c) cm 2 = ...................................................................................................................... = .......................................................................... = d) The surface area of the rectangular prism is 52 square inches. What is the S.A. if all the dimensions are doubled? Find the surface area of the microwave. 4 in. 30 cm 50 cm yd 2 35 cm 2 in. 3 in. S.A. = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = .......................................................................... = page 307 cm 2 S.A. = = .......................................................................... = www.mathsmate.net in.2 © Math’s Mate Mauve/Lime Skill Builder 26 continues on page 309 Skill 26.3 • • • OR • • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of rectangular composite solids (1). Find any unknown side lengths. Calculate the area of each face. Add together the area of all faces. Identify the base by finding the two, identical parallel faces. Hint: A prism does not necessarily sit on its base. Substitute values into the formula: rectangular composite solid S.A. = Perimeter of base × height + 2 × Area of base h Base S.A. = Ph + 2B Q. Find the surface area of the prism. 1 in. 5 in. A. 2 in. 1 in. For P, convert to a rectangle base 6 in. P = 6 + 1 + 5 + 1 + 1 + 2 = 16 1 in. OR 6 in. P = 6 + 6 + 2 + 2 = 16 h = 2 in. 5 in. 1 in. 2 in. Find unknown side lengths base 6 in. =5×1+2×1 =5+2=7 S.A. = Ph + 2B where h = 2 = 16 × 2 + 2 × 7 = 32 + 14 = 46 in.2 B a) Find the surface area of the prism. b) Find the surface area of the prism. 7 ft 3 cm For P, convert to a rectangle For B, find all unknown side lengths 8 cm 8 cm 10 cm 8 cm 5 cm 10 cm 5 cm 10 ft 5 cm P = 10 + 10 + 8 + 8 = 36 P = ...................................................................................................................... B = 5 × 5 + 5 × 8 = 25 + 40 = 65 B = ...................................................................................................................... ...................................................................................................................... S.A. = Ph + 2B where h = 3 S.A. = Ph + 2B ...................................................................................................................... = 36 × 3 + 2 × 65 ...................................................................................................................... = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... = 108 + 130 = .......................................................................... page 308 cm 2 = ........................................................................... = www.mathsmate.net ft 2 © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 308 Skill 26.3 c) Calculating the surface area of rectangular composite solids (2). Find the surface area of the prism. MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 d) Find the surface area of the prism. 10 m Find unknown side lengths 6 yd 4 yd 3 yd 2 yd 4m P = ...................................................................................................................... ...................................................................................................................... B = ...................................................................................................................... ...................................................................................................................... S.A. = Ph + 2B where h = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = .......................................................................... = e) P= B= S.A. = Ph + 2B m2 A window 2 m by 1.5 m and a doorway 2 m by 0.8 m are in the plan for this room. Find the area of the walls to be painted. = .......................................................................... = f) yd 2 Find the surface area of the prism. 5m 4m 3m 9 in. ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... S.A. = = .......................................................................... m2 g) Find the surface area of the prism. S.A. = = .......................................................................... in.2 h) Find the surface area of the prism. 40 ft 5 cm 10 ft 8 cm 3 cm 18 cm ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... S.A. = = .......................................................................... page 309 ft 2 S.A. = = .......................................................................... www.mathsmate.net cm 2 © Math’s Mate Mauve/Lime Skill Builder 26 continues on page 311 Skill 26.4 • • • OR • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of triangular prisms (1). Find any unknown side lengths. Calculate the area of each face. Add together the area of all faces. Substitute values into the formula: triangular prism h S.A. = Perimeter of base × height + 2 × Area of base S.A. = Ph + 2B Base Hint: Do not confuse the height needed to calculate the area of the triangular base, with the height (h) of the prism. Q. Find the surface area of the triangular prism. 6 cm P = 6 + 5 + 5 = 16 1 B = bh where b = 6, h = 4 2 1 = × (6 × 4) 2 A. 4 cm 7 cm Find the surface area of the triangular prism. b) Find the surface area of the triangular prism. 8 in. 3 in. 10 in. 8 cm 25 cm h = 12 S.A. = Ph + 2B where h = 7 = 16 × 7 + 2 × 12 = 112 + 24 = 136 cm 2 5 cm a) b 6 in. 12 cm First find the perimeter of base P = 12 + 12 + 12 = 36 P = ...................................................................................................................... A= Then find the area of base 1 × (12 × 8) = 48 2 ...................................................................................................................... A= ...................................................................................................................... S.A. = Ph + 2B where h = 25 S.A. = ...................................................................................................................... = 36 × 25 + 2 × 48 ...................................................................................................................... = ...................................................................................................................... ...................................................................................................................... = ........................................................................... 900 + 96 = page 310 cm 2 ...................................................................................................................... = ........................................................................... = www.mathsmate.net in.2 © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 310 Skill 26.4 c) Find the surface area of the triangular prism. d) Find the surface area of the triangular prism of cheese. 5 mm 20 12 mm 2 mm 3 in . in. 1 in. 16 mm . 2.5 in P = ...................................................................................................................... ...................................................................................................................... B = ...................................................................................................................... ...................................................................................................................... S.A. = Ph + 2B where h = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = .......................................................................... = e) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of triangular prisms (2). P= B= S.A. = mm 2 Find the surface area of the triangular prism. = .......................................................................... = f) in.2 Find the surface area of the triangular prism. 5 ft 10 in. 25 ft 6 in. 6.5 8 in. ft 6 in. 6 ft P= P = ...................................................................................................................... ...................................................................................................................... B = ...................................................................................................................... ...................................................................................................................... S.A. = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = .......................................................................... = page 311 in.2 B= S.A. = = .......................................................................... = www.mathsmate.net ft 2 © Math’s Mate Mauve/Lime Skill Builder 26 continues on page 313 Skill 26.5 • • • OR • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of pyramids (1). Find any unknown side lengths. Calculate the area of each face. Add together the area of all faces. Substitute values into the formula: regular square pyramid s S.A. = Area of base + 4 × Area of triangle 1 S.A. = B + 4 × ls 2 2 S.A. = l + 2ls Base l l regular triangular pyramid (regular tetrahedron) x 3 2 S.A. = 4 × Area of equilateral triangle 1 x 3 S.A. = 4 × x × 2 2 2 S.A. = x 3 Base x rectangular pyramid S.A. = Area of base + 2 × Area of triangles left & right + 2 × Area of triangles front & back 1 1 S.A. = B + 2 × ws1 + 2 × ls2 s1 2 2 s2 S.A. = lw + ws1 + ls2 Base w l A. S.A. = l 2 + 2ls where l = 8 and s = 12 = 8 × 8 + 2 × 8 × 12 = 64 + 16 × 12 = 64 + 192 = 256 ft 2 Q. Find the surface area of the regular square pyramid. 12 ft 8 ft a) Find the surface area of the regular square pyramid. b) Find the surface area of one of the salt and pepper shakers given that they are regular, square pyramids of base side length 3 cm and slant height 4 cm. 5 in. 6 in. S.A. = l + 2ls where l = 5 and s = 6 2 ...................................................................................................................... =5×5+2×5×6 ...................................................................................................................... = 25 + 60 = ........................................................................... page 312 in.2 S.A. = l 2 + 2ls ...................................................................................................................... = ...................................................................................................................... = = ........................................................................... www.mathsmate.net cm 2 © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 312 Skill 26.5 c) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of pyramids (2). Find the surface area of the largest regular square pyramid, which has a base side length of 200 m and slant height of 250 m. d) Find the surface area of the regular square 18 mm pyramid. 12 m m S.A. = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... = ........................................................................... e) S.A. = m2 Find the surface area of the regular square pyramid. = ........................................................................... f) mm 2 Find the surface area of the rectangular pyramid. 24 ft in. 15 in. 40 64 ft 14 in . 64 ft 40 in. S.A. = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... = ........................................................................... ft2 g) Find the surface area of the regular tetrahedron. [Give your answer as a radical.] S.A. = = ........................................................................... in.2 h) Find the surface area of the regular tetrahedron. [Give your answer as a radical.] 3 3 cm 12 ft 6 cm S.A. = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... = ........................................................................... page 313 cm 2 S.A. = = ........................................................................... www.mathsmate.net ft 2 © Math’s Mate Mauve/Lime Skill Builder 26 continues on page 315 Skill 26.6 • • Break the solid into workable parts. Substitute values into the appropriate formula for surface area. (see skills 26.2 to 26.5, pages 307 to 312) Q. Find the total surface area of the obelisk. A. S.A. regular square pyramid (without base) = 2ls where l = 8 and s = 10 = 2 × 8 × 10 = 160 S.A. square prism (without base) = 4lh + l 2 where l = 8 and h = 15 = 4 × (8 × 15) + 8 × 8 = 4 × 120 + 64 = 544 S.A. obelisk = 160 + 544 = 704 mm 2 10 mm 8 mm 15 mm a) Find the surface area of the solid. h = 10 (height) b) Find the surface area of the solid. 13 m 12 m Find S.A. of the triangular prism without the face that sits on the cube 17 in. 8 in. 10 m Find S.A. of the cube without the top face l = 10 (height) 15 in. 1 (10 × 12) = 60 and h = 10 2 ...................................................................................................................... P = 36, B = ...................................................................................................................... S.A. prism = Ph + 2B = 36 × 10 + 2 × 60 = 480 ...................................................................................................................... S.A. prism − face = 480 − 100 = 380 ...................................................................................................................... S.A. cube − face = 5l = 5 × 100 = 500 2 ...................................................................................................................... S.A. solid = 380 + 500 ...................................................................................................................... ...................................................................................................................... S.A. = = ........................................................................... in.2 m2 = ........................................................................... c) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of composite solids (1). Find the surface area of the glasshouse, excluding its base. d) Find the surface area of the obelisk. 5m 10 y d 4m 4 yd 5m 5 yd 20 m 6m ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... S.A. = = ........................................................................... page 314 m2 S.A. = = ........................................................................... www.mathsmate.net yd 2 © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 314 Skill 26.6 e) MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of composite solids (2). Find the surface area of the octahedron. f) Find the surface area of the solid. cm 13 18 ft 12 cm 8 cm 10 ft 17 cm S.A. = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ft 2 = ........................................................................... = ........................................................................... cm 2 h) Find the surface area of the prism. in. n. 10 5i g) Lou bought a rectangular box containing 15 tightly packaged erasers. What is the surface area of the box? S.A. = 4 in. 2 cm 4 cm m 0c 1 2 in. 10 in. S.A. = ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... = ........................................................................... page 315 cm2 S.A. = = ........................................................................... www.mathsmate.net in.2 © Math’s Mate Mauve/Lime Skill Builder 26 continues on page 317 Skill 26.7 • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Calculating the surface area of basic three-dimensional round solids (1). Substitute values into the formula: cylinder r L.A. = 2πrh S.A. = 2B + L.A. r = 2πr + 2πrh 2 h ⇒ r = 2πr (r + h) cone sphere r S.A. = B + L.A. r S.A. = 4πr 2 s L.A. = πrs h 2πr = πr 2 + πrs = πr (r + s) Q. Using S.A. = 2πr (r + h) and π ≈ 3.14, find the surface area of the cyclinder. 8 cm a) 4 cm Use S.A. = πr (r + s) and π ≈ 3.14 to find the surface area of the conical carrot. A. S.A. = 2πr (r + h) where r = 2 and h = 8 = 2 × 3.14 × 2 × (2 + 8) = 12.56 × 10 = 125.6 cm 2 b) Using S.A. = 4πr 2 and π ≈ surface area of the sphere. 22 , 7 find the 4 cm 21 10 cm S.A. = πr(r + s) where r = 2, s = 10 ft S.A. = ...................................................................................................................... ...................................................................................................................... ≈ 3.14 × 2 × (2 + 10) ...................................................................................................................... ≈ ...................................................................................................................... = 6.28 × 12 = ........................................................................... page 316 cm 2 = ........................................................................... = www.mathsmate.net ft 2 © Math’s Mate Mauve/Lime Skill Builder 26 continued from page 316 Skill 26.7 c) Calculating the surface area of basic three-dimensional round solids (2). Using S.A. = 4πr 2 and π ≈ 22 , 7 MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 d) Use S.A. = πr (r + s) and π ≈ 3.14 to find how much area still needs to be covered 6 cm in chocolate to cover the whole cone given that 40 cm 2 have been covered so far. find the surface area of the snow globe. S.A. = ...................................................................................................................... ...................................................................................................................... ≈ ...................................................................................................................... ≈ ...................................................................................................................... = ........................................................................... = e) 12 cm 140 mm S.A. = mm 2 Using S.A. = 2πr (r + h) and π ≈ 3.14, find the surface area of the cyclindrical stool seat. cm 2 = ........................................................................... = f) 22 Using S.A. = 2πr (r + h) and π ≈ , find the 7 surface area of the can of tuna. 40 cm 5 cm 8 cm 14 cm S.A. = ...................................................................................................................... ...................................................................................................................... ≈ ...................................................................................................................... ≈ ...................................................................................................................... = ........................................................................... = cm 2 g) Use π ≈ 3.14 to find the surface area of the cone. [Hint: Pythagorean theorem will help.] S.A. = = ........................................................................... = cm 2 h) Use π ≈ 3.14 to find the surface area of the cone. [Hint: Pythagorean theorem will help.] 24 in. 10 in. 24 yd 36 yd S.A. = ...................................................................................................................... ...................................................................................................................... ≈ ...................................................................................................................... ≈ ...................................................................................................................... = ........................................................................... = page 317 in.2 S.A. = = ........................................................................... = www.mathsmate.net yd 2 © Math’s Mate Mauve/Lime Skill Builder 26 Skill 26.8 • • Calculating the surface area of more complex three-dimensional round solids. Substitute values into the appropriate formula: (see skills 26.2 to 26.7, pages 307 to 316) Adapt the formula where necessary. Q. Using π ≈ 22 7 hemisphere 4πr 2 S.A. = + πr 2 2 = 3πr 2 MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 r A. S.A. = 3πr 2 where r = 7 22 1 =3× ×7 ×7 17 = 66 × 7 = 462 in.2 find the surface area of the hemisphere. 14 in. a) Using π ≈ 3.14 find the surface area of the hemisphere. b) Using π ≈ 3.14 find the surface area of the watermelon half. 10 in. t 4f S.A. = 3πr where r = 4 c) 2 ...................................................................................................................... S.A. = ...................................................................................................................... = 3...................................................................................................................... × 3.14 × 4 × 4 ≈ ...................................................................................................................... 150.72 ft 2 = 9.42 × 16 = ........................................................................... = ........................................................................... = Use π ≈ 3.14 to find the surface area of the shape. d) Use π ≈ 22 7 in.2 to find the surface area of the shape. 8 in. 5 ft 20 in. t f 10 14 in. 6 ft ...................................................................................................................... S.A. prism = L.A. cone = ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... S.A. cylinder half = S.A. cylinder = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... S.A. = = ........................................................................... page 318 ft 2 S.A. = = ........................................................................... www.mathsmate.net in.2 © Math’s Mate Mauve/Lime Skill Builder 26 Skill 26.9 • • MMMauve 1 1 2 2 3 3 4 4 MMLime 1 1 2 2 3 3 4 4 Expressing the surface area of three-dimensional solids in algebraic form. Substitute values into the appropriate formula for surface area. (see skills 26.2 to 26.8, pages 307 to 318) Adapt the formula where necessary. Q. Write a formula for the surface area of the cone. a A. S.A. = πr(r + s) where r = a and s = 4a = π × a × (a + 4a) = πa × 5a = 5πa 2 4a a) Write a formula for the surface area S.A. of the cylinder. b) Write a formula for the surface area S.A. of the hemisphere. r 2d 5d S.A. = 2πr(r + h) where r = d and h = 5d ...................................................................................................................... ...................................................................................................................... = 2πd(d + 5d) ...................................................................................................................... = ...................................................................................................................... = 2πd × 6d ................................................................... c) S.A. = S.A. = 12πd 2 Write a formula for the surface area S.A. of the obelisk. = ................................................................... d) Write a formula for the surface area S.A. of the cube. 3d a S.A. = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = ................................................................... S.A. = = ................................................................... Write a formula for the surface area S.A. of the cylinder. 6x S.A. = f) S.A. = Write a formula for the surface area S.A. of the cone. 10x 7p e) S.A. = 2p S.A. = ...................................................................................................................... ...................................................................................................................... = ...................................................................................................................... = ...................................................................................................................... = ................................................................... page 319 S.A. = S.A. = = ................................................................... www.mathsmate.net S.A. = © Math’s Mate Mauve/Lime Skill Builder 26
© Copyright 2026 Paperzz