26. [Surface Area]

26. [Surface Area]
continues on page 306
Skill 26.1
•
•
•
Calculating the surface area of rectangular prisms and cubes
by using nets (1).
Find any unknown side lengths.
Calculate the area of each face as shown on the net.
Hint: Rectangular prisms have 6 faces of 3 different sizes: base and top (2)
front and back (2)
other faces (2)
Add together the area of all faces.
Hints: Sides marked with a dash ( ) are of equal length.
Sides marked with two dashes ( ) are of equal length etc.
A. Area of square face = 5 units × 5 units
= 25 sq. units
A cube has
S.A. = 25 × 6
6 identical faces
= 150 sq. units
Q. Find the surface area of the cube by
finding the area of its net.
5
B
a
c
k
B
a
c
k
F
r
o
n
t
6
Ba
30
F
r
o
n
t
To
3
Top
b) Find the surface area of the cube by
finding the area of its net.
p
Find the surface area of the rectangular
prism by finding the area of its net.
se
a)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Base
20
Area:
base & top = 2 × 20 × 3 = 120
......................................................................................................................
Area: front & back = 2 × 30 × 3 = 180
......................................................................................................................
Area of 1 face
=
S.A. =
=
......................................................................................................................
........................................................................
sq. units
Area: 2 other faces = 2 × 30 × 20 = 1200
......................................................................................................................
S.A.
= 120 + 180 + 1200 =
........................................................................
page 305
sq. units
www.mathsmate.net
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 305
Skill 26.1
c)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of rectangular prisms and cubes
by using nets (2).
Find the surface area of the square prism by
finding the area of its net.
d) Find the surface area of the rectangular
prism by finding the area of its net.
Back
3
Top
Top
8
Lf
aa
tc
ee
r
a
Base l
Base
Top
Base
Front
12
20
5
Area: base & top =
Area:
base & top =
......................................................................................................................
......................................................................................................................
Area: 4 lateral faces =
Area: front & back =
......................................................................................................................
S.A. =
=
........................................................................
......................................................................................................................
sq. units
Area: 2 other faces =
......................................................................................................................
S.A.
=
=
........................................................................
e)
Find the surface area of the square prism by
finding the area of its net.
f)
sq. units
Find the surface area of the rectangular
prism by finding the area of its net.
4
16
42
7
30
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
S.A. =
=
........................................................................
sq. units
......................................................................................................................
S.A.
=
=
........................................................................
page 306
www.mathsmate.net
sq. units
© Math’s Mate Mauve/Lime Skill Builder 26
Skill 26.2
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of rectangular prisms.
Substitute known values into the formula:
rectangular prism
h
S.A. = 2(length × width) + 2(length × height) + 2(width × height)
S.A. = 2lw + 2lh + 2wh = 2(lw + lh + wh)
w
l
cube
S.A. = 6(length × length) = 6l 2
Q. Lewis wants to make a box, with a lid, for his
card collection. The box needs a base of 11 cm
by 20 cm and must be 12 cm high. How much
wood does Lewis need?
A. S.A. = 2(lw + lh + wh) where l = 20, w = 11 and h = 12
= 2 × (20 × 22 + 20 × 12 + 11 × 12)
= 2 × (220 + 240 + 132)
= 2 × 592
= 1184 cm 2
The locker block needs to be resurfaced.
What is the surface area of this rectangular
prism disregarding its base?
b) Zoe’s mattress was torn in removal. What is
the minimum amount of mattress ticking
needed to re-cover the mattress?
a)
1.5 yd
0.5 yd
190 cm
d
2y
m
0c
55 cm 11
Subtract 1 base area
S.A.
= lw + 2lh + 2wh where l = 110, w = 55 and h = 190
......................................................................................................................
S.A. = 2(lw + lh + wh)
......................................................................................................................
= 110
× 55 + 2 × (110 × 190) + 2 × (55 × 190) = ......................................................................................................................
......................................................................................................................
= 6050
+ 2 × 20,900 + 2 × 10,450
......................................................................................................................
= 6050
+ 41,800 + 20,900
=
..........................................................................
c)
cm 2
= ......................................................................................................................
= ..........................................................................
=
d) The surface area of the rectangular prism is
52 square inches. What is the S.A. if all the
dimensions are doubled?
Find the surface area of the microwave.
4 in.
30 cm
50 cm
yd 2
35 cm
2 in.
3 in.
S.A.
=
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ..........................................................................
=
page 307
cm 2
S.A. =
= ..........................................................................
=
www.mathsmate.net
in.2
© Math’s Mate Mauve/Lime Skill Builder 26
continues on page 309
Skill 26.3
•
•
•
OR
•
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of rectangular composite solids (1).
Find any unknown side lengths.
Calculate the area of each face.
Add together the area of all faces.
Identify the base by finding the two, identical parallel faces.
Hint: A prism does not necessarily sit on its base.
Substitute values into the formula:
rectangular composite solid
S.A. = Perimeter of base × height + 2 × Area of base
h
Base
S.A. = Ph + 2B
Q. Find the surface area of the prism.
1 in.
5 in.
A.
2 in.
1 in.
For P, convert to
a rectangle
base
6 in.
P = 6 + 1 + 5 + 1 + 1 + 2 = 16
1 in.
OR
6 in.
P = 6 + 6 + 2 + 2 = 16
h = 2 in.
5 in.
1 in.
2 in.
Find unknown
side lengths
base
6 in.
=5×1+2×1
=5+2=7
S.A. = Ph + 2B where h = 2
= 16 × 2 + 2 × 7
= 32 + 14 = 46 in.2
B
a)
Find the surface area of the prism.
b) Find the surface area of the prism.
7 ft
3 cm
For P, convert to
a rectangle
For B, find all
unknown side lengths
8 cm
8 cm
10 cm
8 cm
5 cm
10 cm
5 cm
10
ft
5 cm
P = 10 + 10 + 8 + 8 = 36
P
=
......................................................................................................................
B = 5 × 5 + 5 × 8 = 25 + 40 = 65
B
=
......................................................................................................................
......................................................................................................................
S.A. = Ph + 2B where h = 3
S.A.
= Ph + 2B
......................................................................................................................
= 36
× 3 + 2 × 65
......................................................................................................................
= ......................................................................................................................
......................................................................................................................
......................................................................................................................
= 108 + 130
=
..........................................................................
page 308
cm 2
= ...........................................................................
=
www.mathsmate.net
ft 2
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 308
Skill 26.3
c)
Calculating the surface area of rectangular composite solids (2).
Find the surface area of the prism.
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
d) Find the surface area of the prism.
10 m
Find unknown
side lengths
6 yd
4 yd
3 yd
2 yd
4m
P
=
......................................................................................................................
......................................................................................................................
B
=
......................................................................................................................
......................................................................................................................
S.A.
= Ph + 2B where h =
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ..........................................................................
=
e)
P=
B=
S.A. = Ph + 2B
m2
A window 2 m by 1.5 m and a doorway
2 m by 0.8 m are in the plan for this room.
Find the area of the walls to be painted.
= ..........................................................................
=
f)
yd 2
Find the surface area of the prism.
5m
4m
3m
9 in.
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
S.A.
=
=
..........................................................................
m2
g) Find the surface area of the prism.
S.A. =
=
..........................................................................
in.2
h) Find the surface area of the prism.
40 ft
5 cm
10 ft
8 cm
3 cm
18 cm
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
S.A.
=
=
..........................................................................
page 309
ft 2
S.A. =
=
..........................................................................
www.mathsmate.net
cm 2
© Math’s Mate Mauve/Lime Skill Builder 26
continues on page 311
Skill 26.4
•
•
•
OR
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of triangular prisms (1).
Find any unknown side lengths.
Calculate the area of each face.
Add together the area of all faces.
Substitute values into the formula:
triangular prism
h
S.A. = Perimeter of base × height + 2 × Area of base
S.A. = Ph + 2B
Base
Hint: Do not confuse the height needed to calculate the area of the triangular base, with the
height (h) of the prism.
Q. Find the surface area of the triangular prism.
6 cm
P = 6 + 5 + 5 = 16
1
B = bh where b = 6, h = 4
2
1
=
× (6 × 4)
2
A.
4 cm
7 cm
Find the surface area of the triangular prism.
b) Find the surface area of the triangular prism.
8 in.
3 in.
10 in.
8 cm
25 cm
h
= 12
S.A. = Ph + 2B where h = 7
= 16 × 7 + 2 × 12
= 112 + 24
= 136 cm 2
5 cm
a)
b
6 in.
12 cm
First find the perimeter of base
P = 12 + 12 + 12 = 36
P
=
......................................................................................................................
A=
Then find the area of base
1
× (12 × 8) = 48
2
......................................................................................................................
A=
......................................................................................................................
S.A. = Ph + 2B where h = 25
S.A.
=
......................................................................................................................
= 36
× 25 + 2 × 48
......................................................................................................................
= ......................................................................................................................
......................................................................................................................
= ...........................................................................
900 + 96
=
page 310
cm 2
......................................................................................................................
= ...........................................................................
=
www.mathsmate.net
in.2
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 310
Skill 26.4
c)
Find the surface area of the triangular prism.
d) Find the surface area of the triangular
prism of cheese.
5 mm
20
12 mm
2
mm
3 in
.
in.
1 in.
16 mm
.
2.5 in
P
=
......................................................................................................................
......................................................................................................................
B
=
......................................................................................................................
......................................................................................................................
S.A.
= Ph + 2B where h =
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ..........................................................................
=
e)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of triangular prisms (2).
P=
B=
S.A. =
mm 2
Find the surface area of the triangular prism.
= ..........................................................................
=
f)
in.2
Find the surface area of the triangular prism.
5 ft
10 in.
25
ft
6 in.
6.5
8 in.
ft
6 in.
6 ft
P=
P
=
......................................................................................................................
......................................................................................................................
B
=
......................................................................................................................
......................................................................................................................
S.A.
=
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ..........................................................................
=
page 311
in.2
B=
S.A. =
= ..........................................................................
=
www.mathsmate.net
ft 2
© Math’s Mate Mauve/Lime Skill Builder 26
continues on page 313
Skill 26.5
•
•
•
OR
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of pyramids (1).
Find any unknown side lengths.
Calculate the area of each face.
Add together the area of all faces.
Substitute values into the formula:
regular square pyramid
s
S.A. = Area of base + 4 × Area of triangle
1
S.A. = B + 4 × ls
2
2
S.A. = l + 2ls
Base
l
l
regular triangular pyramid (regular tetrahedron)
x 3
2
S.A. = 4 × Area of equilateral triangle
1
x 3
S.A. = 4 × x ×
2
2
2
S.A. = x 3
Base
x
rectangular pyramid
S.A. = Area of base + 2 × Area of triangles left & right + 2 × Area of triangles front & back
1
1
S.A. = B + 2 × ws1 + 2 × ls2
s1
2
2
s2
S.A. = lw + ws1 + ls2
Base
w
l
A. S.A. = l 2 + 2ls where l = 8 and s = 12
= 8 × 8 + 2 × 8 × 12
= 64 + 16 × 12
= 64 + 192
= 256 ft 2
Q. Find the surface area of the regular square
pyramid.
12
ft
8 ft
a)
Find the surface area of the regular square
pyramid.
b) Find the surface area of one of the salt and
pepper shakers given that they are regular,
square pyramids of base side length 3 cm and
slant height 4 cm.
5 in.
6 in.
S.A. = l + 2ls where l = 5 and s = 6
2
......................................................................................................................
=5×5+2×5×6
......................................................................................................................
= 25 + 60
=
...........................................................................
page 312
in.2
S.A.
= l 2 + 2ls
......................................................................................................................
=
......................................................................................................................
=
=
...........................................................................
www.mathsmate.net
cm 2
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 312
Skill 26.5
c)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of pyramids (2).
Find the surface area of the largest regular
square pyramid, which has a base side length
of 200 m and slant height of 250 m.
d) Find the surface area of the regular square
18 mm
pyramid.
12 m
m
S.A.
=
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
=
...........................................................................
e)
S.A. =
m2
Find the surface area of the regular square
pyramid.
=
...........................................................................
f)
mm 2
Find the surface area of the rectangular
pyramid.
24
ft
in.
15 in.
40
64 ft
14
in
.
64 ft
40 in.
S.A.
=
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
=
...........................................................................
ft2
g) Find the surface area of the regular
tetrahedron. [Give your answer as a radical.]
S.A. =
=
...........................................................................
in.2
h) Find the surface area of the regular
tetrahedron. [Give your answer as a radical.]
3 3 cm
12 ft
6 cm
S.A.
=
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
=
...........................................................................
page 313
cm 2
S.A. =
=
...........................................................................
www.mathsmate.net
ft 2
© Math’s Mate Mauve/Lime Skill Builder 26
continues on page 315
Skill 26.6
•
•
Break the solid into workable parts.
Substitute values into the appropriate formula for surface area.
(see skills 26.2 to 26.5, pages 307 to 312)
Q. Find the total surface area of the obelisk.
A. S.A. regular square pyramid (without base)
= 2ls where l = 8 and s = 10
= 2 × 8 × 10
= 160
S.A. square prism (without base)
= 4lh + l 2 where l = 8 and h = 15
= 4 × (8 × 15) + 8 × 8
= 4 × 120 + 64 = 544
S.A. obelisk = 160 + 544 = 704 mm 2
10 mm
8 mm
15 mm
a)
Find the surface area of the solid.
h = 10 (height)
b) Find the surface area of the solid.
13 m
12 m
Find S.A. of the triangular
prism without the face
that sits on the cube
17
in.
8 in.
10 m
Find S.A. of the
cube without the
top face
l = 10 (height)
15 in.
1
(10 × 12) = 60 and h = 10
2
......................................................................................................................
P = 36, B =
......................................................................................................................
S.A. prism = Ph + 2B = 36 × 10 + 2 × 60 = 480
......................................................................................................................
S.A. prism − face = 480 − 100 = 380
......................................................................................................................
S.A. cube − face = 5l = 5 × 100 = 500
2
......................................................................................................................
S.A. solid = 380 + 500
......................................................................................................................
......................................................................................................................
S.A. =
=
...........................................................................
in.2
m2
=
...........................................................................
c)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of composite solids (1).
Find the surface area of the glasshouse,
excluding its base.
d) Find the surface area of the obelisk.
5m
10 y
d
4m
4 yd
5m
5 yd
20 m
6m
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
S.A. =
=
...........................................................................
page 314
m2
S.A. =
=
...........................................................................
www.mathsmate.net
yd 2
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 314
Skill 26.6
e)
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of composite solids (2).
Find the surface area of the octahedron.
f)
Find the surface area of the solid.
cm
13
18
ft
12 cm
8
cm
10 ft
17 cm
S.A.
=
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
ft 2
=
...........................................................................
=
...........................................................................
cm 2
h) Find the surface area of the prism.
in.
n.
10
5i
g) Lou bought a rectangular box containing 15
tightly packaged erasers. What is the surface
area of the box?
S.A. =
4 in.
2 cm
4 cm
m
0c
1
2 in.
10 in.
S.A.
=
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
......................................................................................................................
=
...........................................................................
page 315
cm2
S.A. =
=
...........................................................................
www.mathsmate.net
in.2
© Math’s Mate Mauve/Lime Skill Builder 26
continues on page 317
Skill 26.7
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Calculating the surface area of basic three-dimensional
round solids (1).
Substitute values into the formula:
cylinder
r
L.A. = 2πrh
S.A. = 2B + L.A.
r
= 2πr + 2πrh
2
h
⇒
r
= 2πr (r + h)
cone
sphere
r
S.A. = B + L.A.
r
S.A. = 4πr 2
s
L.A. = πrs
h
2πr
= πr 2 + πrs
= πr (r + s)
Q. Using S.A. = 2πr (r + h) and π ≈ 3.14, find the
surface area of the cyclinder.
8 cm
a)
4 cm
Use S.A. = πr (r + s) and π ≈ 3.14 to find the
surface area of the conical carrot.
A. S.A. = 2πr (r + h) where r = 2 and h = 8
= 2 × 3.14 × 2 × (2 + 8)
= 12.56 × 10
= 125.6 cm 2
b) Using S.A. = 4πr 2 and π ≈
surface area of the sphere.
22
,
7
find the
4 cm
21
10 cm
S.A. = πr(r + s) where r = 2, s = 10
ft
S.A. =
......................................................................................................................
......................................................................................................................
≈ 3.14
× 2 × (2 + 10)
......................................................................................................................
≈ ......................................................................................................................
= 6.28
× 12
=
...........................................................................
page 316
cm 2
= ...........................................................................
=
www.mathsmate.net
ft 2
© Math’s Mate Mauve/Lime Skill Builder 26
continued from page 316
Skill 26.7
c)
Calculating the surface area of basic three-dimensional
round solids (2).
Using S.A. = 4πr 2 and π ≈
22
,
7
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
d) Use S.A. = πr (r + s) and π ≈ 3.14 to find how
much area still needs to be covered
6 cm
in chocolate to cover the whole
cone given that 40 cm 2 have
been covered so far.
find the
surface area of the snow globe.
S.A.
=
......................................................................................................................
......................................................................................................................
≈ ......................................................................................................................
≈ ......................................................................................................................
= ...........................................................................
=
e)
12 cm
140 mm
S.A. =
mm 2
Using S.A. = 2πr (r + h) and π ≈ 3.14, find the
surface area of the cyclindrical stool seat.
cm 2
= ...........................................................................
=
f)
22
Using S.A. = 2πr (r + h) and π ≈ , find the
7
surface area of the can of tuna.
40 cm
5 cm
8 cm
14 cm
S.A.
=
......................................................................................................................
......................................................................................................................
≈ ......................................................................................................................
≈ ......................................................................................................................
= ...........................................................................
=
cm 2
g) Use π ≈ 3.14 to find the surface area of the
cone. [Hint: Pythagorean theorem will help.]
S.A. =
= ...........................................................................
=
cm 2
h) Use π ≈ 3.14 to find the surface area of the
cone. [Hint: Pythagorean theorem will help.]
24 in.
10 in.
24 yd
36 yd
S.A.
=
......................................................................................................................
......................................................................................................................
≈ ......................................................................................................................
≈ ......................................................................................................................
= ...........................................................................
=
page 317
in.2
S.A. =
= ...........................................................................
=
www.mathsmate.net
yd 2
© Math’s Mate Mauve/Lime Skill Builder 26
Skill 26.8
•
•
Calculating the surface area of more complex three-dimensional
round solids.
Substitute values into the appropriate formula:
(see skills 26.2 to 26.7, pages 307 to 316)
Adapt the formula where necessary.
Q. Using π ≈
22
7
hemisphere
4πr 2
S.A. =
+ πr 2
2
= 3πr 2
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
r
A. S.A. = 3πr 2 where r = 7
22 1
=3×
×7 ×7
17
= 66 × 7
= 462 in.2
find the surface area of the
hemisphere.
14 in.
a)
Using π ≈ 3.14 find the surface area of the
hemisphere.
b) Using π ≈ 3.14 find the surface area of the
watermelon half.
10 in.
t
4f
S.A. = 3πr where r = 4
c)
2
......................................................................................................................
S.A.
=
......................................................................................................................
= 3......................................................................................................................
× 3.14 × 4 × 4
≈ ......................................................................................................................
150.72 ft 2
= 9.42
× 16
=
...........................................................................
= ...........................................................................
=
Use π ≈ 3.14 to find the surface area of the
shape.
d) Use π ≈
22
7
in.2
to find the surface area of the shape.
8 in.
5 ft
20 in.
t
f
10
14 in.
6 ft
......................................................................................................................
S.A. prism =
L.A.
cone =
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
S.A. cylinder half =
S.A. cylinder =
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
S.A. =
=
...........................................................................
page 318
ft 2
S.A. =
=
...........................................................................
www.mathsmate.net
in.2
© Math’s Mate Mauve/Lime Skill Builder 26
Skill 26.9
•
•
MMMauve 1 1 2 2 3 3 4 4
MMLime 1 1 2 2 3 3 4 4
Expressing the surface area of three-dimensional solids in
algebraic form.
Substitute values into the appropriate formula for surface area.
(see skills 26.2 to 26.8, pages 307 to 318)
Adapt the formula where necessary.
Q. Write a formula for the surface area of the cone.
a
A. S.A. = πr(r + s) where r = a and s = 4a
= π × a × (a + 4a)
= πa × 5a
= 5πa 2
4a
a)
Write a formula for the surface area S.A. of the
cylinder.
b) Write a formula for the surface area S.A. of the
hemisphere.
r
2d
5d
S.A.
= 2πr(r + h) where r = d and h = 5d
......................................................................................................................
......................................................................................................................
= 2πd(d
+ 5d)
......................................................................................................................
= ......................................................................................................................
= 2πd
× 6d
...................................................................
c)
S.A. =
S.A. = 12πd 2
Write a formula for the surface area S.A. of the
obelisk.
= ...................................................................
d) Write a formula for the surface area S.A. of the
cube.
3d
a
S.A.
=
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ...................................................................
S.A. =
= ...................................................................
Write a formula for the surface area S.A. of the
cylinder.
6x
S.A. =
f)
S.A. =
Write a formula for the surface area S.A. of the
cone.
10x
7p
e)
S.A. =
2p
S.A.
=
......................................................................................................................
......................................................................................................................
= ......................................................................................................................
= ......................................................................................................................
= ...................................................................
page 319
S.A. =
S.A. =
= ...................................................................
www.mathsmate.net
S.A. =
© Math’s Mate Mauve/Lime Skill Builder 26