Operations with Radicals Example 1 Simplify Expressions Simplify. a. 50a5 x4 5 4 2 2 2 2 = 2 • 5 • = 5a2x2 2a b. d 2 2 ) • 2 2 a • (x ) Product Property of Radicals Simplify. c. 9 9 9 3 2m 12 n (a Factor into squares where possible. 12 n d 2 2 2 • 5 • (a ) • a • (x ) = 50a x d = 12 n 9 2m (d 6 )2 = (d 6 )2 (n ) = = • n 4 d6 n d n 6 n Example 2 =d , (d ) n 4 6 6 2 4 = 4 2 (n ) = n • n 3 n n n 5 Quotient Property 9 2m • 3 4m 2 3 2 4m 9 • 4m 2 3 2 m • 4m 3 36 m2 3 3 = Rationalize the denominator. 9 2m 3 = Product Property d6 n 3 3 (n ) • n 4 2 3 = = Factor into squares. 4 2 = = 9 3 Quotient Property 8m 3 36 m2 2m 2 Rationalize the denominator. Product Property Multiply. 3 8m3 = 2m n=n Multiply Radicals Simplify 2 18a 3 • 5 72a 2b3 . 3 2 3 3 Product Property of Radicals 2 3 2 18a • 5 72a b = 2 • 5 • 18 a • 72a b = 10 • (36)2 • (a 2 )2 • a • b2 • b = 10 • 36 2 • 2 (a 2 ) 2 • a • b • b = 10 • 36 • a2 • b • a • b or 360a2b ab Factor into squares where possible. Product Property of Radicals Multiply. Example 3 Add and Subtract Radicals Simplify –4 18 + 5 50 – 2 98 –4 18 + 5 50 – 2 98 2 2 = -4 2 • 3 + 5 2 • 5 – 2 2 • 7 2 Factor using squares. 2 2 = -4 2 • 3 + 5 2 • 5 – 2 2 • 7 = -4 • 3 • 2 + 5 • 5 • 2 – 2 • 7 • 2 Product Property 2 32 = 3, = -12 2 + 25 2 – 14 2 =- 2 Example 4 Simplify. a. (2 2 – 52 = 5, 72 = 7 Multiply. Combine like radicals. Multiply Radicals 7 )(3 7 – 5) F O I L 7 )(3 7 – 5) = 2 2 • 3 7 + 2 2 • (–5) + (– 7 ) • (3 7 ) + (– 7 ) • (–5) (2 2 – 2 = 6 14 – 10 2 – 3 7 + 5 7 Product Property = 6 14 – 10 2 – 21 + 5 7 3 7 2 = 3 7 = 21 b. (4 5 – 3 2 )(4 5 + 3 2 ) (4 5 – 3 2 )(4 5 + 3 2 ) = 4 5 • 4 5 + 4 5 ( 3 2 ) + (– 3 2 )(4 5 ) + (– 3 2 )( 3 2 ) 2 = 16 5 + 12 10 – 12 10 – 9 = 80 – 18 2 Multiply. 2 52 = 5, = 62 7 2 5 22 = 2 Subtract. Example 5 Simplify FOIL Use a Conjugate to Rationalize a Denominator 7 2+ 5 = = 7 (2 = 2 • 5) 2 7 – 2 = . (2 – (2 – 35 2 – 5) 5) (2 – 5) because 2 – 5 is the conjugate of 2 + (2 – 5) Distributive Property for the numerator FOIL for the denominator Multiply by (5) 2 7 – 35 4 – 5 2 7 – 35 –1 = –2 7 + 35 Multiply. Combine like terms. Multiply numerator and denominator by –1. 5.
© Copyright 2026 Paperzz