Power Management for Enhanced System Performance of Passive

Three Dimensional Visualization of Qutrit States
Vinod K. Mishra, Ph.D.
US Army Research Laboratory, Aberdeen, MD 21005
[email protected]
Abstract
The qutrit comes next in complexity after qubit as a resource for quantum information processing. The qubit
density matrix can be easily visualized using Bloch sphere representation of its states. In contrast, this simplicity
is in general unavailable for the 8-dimensional state space of a qutrit. In this work a new way to visualize them in
a 3-dimensional Cartesian space is presented and compared with earlier similar efforts.
1. INTRODUCTION
A qutrit density matrix is of order 3 and so contains 9 parameters constrained by many relations.
One obvious constraint is that the trace of the density matrix is unity and effectively we can
start with the 8 parameter space. It is important to be able to visualize this state space to get a
better understanding of the qutrit properties. So far there have been many attempts at visualizing
this space [1-4] based on different choices of the 3rd order basis matrices. The earliest attempt
used 8 Gell-Mann matrices, which form a complete set for expressing 3 × 3 SU(3) matrices.
The structure of the resulting 8-dimensional parameter space is quite complicated and almost
impossible to visualize in general. The 2- and 3-sections of this space obtained by keeping 2
and 3 nonzero parameters respectively have been described earlier [1,2]. It was found that these
sections have complicated shapes and visualization is not possible for higher order sections.
Recently a new approach [5,6] using Spin-1 matrices has been presented. The 8-dimensional
parameter space was mapped in an ellipsoid and a vector. The 3-dimensional objects make it
easier to visualize the qutrit state space. In this paper we use similar approach and find a new
way to visualize the space in terms of only 2 vectors.
1
2. THEORETICAL ANALYSIS
General Qutrit States
The most general qutrit density matrix can be represented using SU (3) invariant form as
1
๐œŒ๐œŒ = 3 ๐ผ๐ผ3 + ๐’๐’
๏ฟฝ๏ฟฝโƒ—. ๏ฟฝ๐›Œ๐›Œโƒ—
(1)
Here ๐ผ๐ผ3 is 3 × 3 unit matrix, , ๐ง๐ง
๏ฟฝโƒ— = (๐‘›๐‘› 1, n2,โ€ฆ, ๐‘›๐‘›8) are 8 real parameters, and , ๏ฟฝ๐›Œ๐›Œโƒ— = (๐œ†๐œ† 1, ๐œ†๐œ† 2,โ€ฆ, ๐œ†๐œ†
R
8)
R
R
R
R
are 3 × 3 Gell-Mann matrices. Using them one obtains
1
๐‘›๐‘›8
โŽก3 + ๐‘›๐‘›3 + โˆš3
โŽข
๐œŒ๐œŒ = โŽข ๐‘›๐‘›1 + ๐‘–๐‘–๐‘›๐‘›2
โŽข
โŽฃ ๐‘›๐‘›4 + ๐‘–๐‘–๐‘›๐‘›5
1
3
๐‘›๐‘›1 โˆ’ ๐‘–๐‘–๐‘›๐‘›2
โˆ’ ๐‘›๐‘›3 +
๐‘›๐‘›8
โˆš3
๐‘›๐‘›6 + ๐‘–๐‘–๐‘›๐‘›7
๐‘›๐‘›4 โˆ’ ๐‘–๐‘–๐‘›๐‘›5 โŽค
โŽฅ
๐‘›๐‘›6 โˆ’ ๐‘–๐‘–๐‘›๐‘›7 โŽฅ
1
2๐‘›๐‘›8 โŽฅ
โˆ’
โŽฆ
3
(2)
โˆš3
For this density matrix to represent a physical qutrit, it must satisfy some constraints as given
below.
(i)
Positivity of diagonal elements
(ii)
0 โ‰ค 3 ± ๐‘›๐‘›3 +
(3b)
(iii)
๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ) = 1
(3c)
(iv)
๏ฟฝโƒ—. ๐’๐’
๐’๐’
๏ฟฝโƒ— โ‰ค 3
det ๐œŒ๐œŒ โ‰ฅ 0
(3d)
1
๐‘›๐‘›8
โˆš3
Normalization
1
โ‰ค 1, 0 โ‰ค 3 โˆ’
2๐‘›๐‘›8
โˆš3
โ‰ค1
(3a)
Constraint on the length of the state vector
1
Non-negativity of the determinant
Earlier attempts at visualizing the general constraints given above have focused on 8dimensional Cartesian space as given in references [1-4]. The 2- and 3-sections of this 8dimensional objects (only 2 and 3 nonzero elements) have been found, classified, and
2
characterized by these authors. Beyond 3 dimensions it is impossible to visualize the state space
so attempts have been made to find alternative schemes. In this work such a scheme is presented.
Reduction of qutrit constraints to be applicable in 3-dimensions
Following the formalism of reference [5,6], an alternative representation of the qutrit density
matrix based on the symmetric part of the 2 qubit Bloch matrix representing a spin-1 state is
given by
๐œ”๐œ”1
(๐‘ž๐‘ž3 + ๐‘–๐‘–๐‘Ž๐‘Ž3 )/2
(๐‘ž๐‘ž2 โˆ’ ๐‘–๐‘–๐‘Ž๐‘Ž2 )/2
๐œ”๐œ”2
โˆ’(๐‘ž๐‘ž1 + ๐‘–๐‘–๐‘Ž๐‘Ž1 )/2๏ฟฝ
๐œŒ๐œŒ = ๏ฟฝ(๐‘ž๐‘ž3 โˆ’ ๐‘–๐‘–๐‘Ž๐‘Ž3 )/2
๐œ”๐œ”3
(๐‘ž๐‘ž2 + ๐‘–๐‘–๐‘Ž๐‘Ž2 )/2 โˆ’(๐‘ž๐‘ž1 โˆ’ ๐‘–๐‘–๐‘Ž๐‘Ž1 )/2
(4)
The parameters in this representation are connected to spin-1 observables.
๐œ”๐œ”๐‘–๐‘– =< ๐‘†๐‘†๐‘–๐‘–2 >= ๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ๐‘†๐‘†๐‘–๐‘–2 ),
(5a)
๐‘ž๐‘ž๐‘˜๐‘˜ =< ๐‘†๐‘†๐‘–๐‘– ๐‘†๐‘†๐‘—๐‘— + ๐‘†๐‘†๐‘—๐‘— ๐‘†๐‘†๐‘–๐‘– >= ๐‘‡๐‘‡๐‘‡๐‘‡๏ฟฝ๐œŒ๐œŒ(๐‘†๐‘†๐‘–๐‘– ๐‘†๐‘†๐‘—๐‘— + ๐‘†๐‘†๐‘—๐‘— ๐‘†๐‘†๐‘–๐‘– )๏ฟฝ, ๐‘˜๐‘˜ โ‰  ๐‘–๐‘–, ๐‘—๐‘—
(5c)
๐‘Ž๐‘Ž๐‘–๐‘– =< ๐‘†๐‘†๐‘–๐‘– >= ๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ๐‘†๐‘†๐‘–๐‘– ),
(5b)
Comparison of this parametrization of qutrit density matrix with the earlier one based on the
Gell-Mann matrices gives the following identities.
1
1
1
1
1
1
๐‘›๐‘›1 = 2 ๐‘ž๐‘ž3 ,๐‘›๐‘›2 = 2 ๐‘Ž๐‘Ž3 , ๐‘›๐‘›4 = 2 ๐‘ž๐‘ž2 , ๐‘›๐‘›5 = 2 ๐‘Ž๐‘Ž2 , ๐‘›๐‘›6 = โˆ’ 2 ๐‘ž๐‘ž1 , ๐‘›๐‘›7 = 2 ๐‘Ž๐‘Ž1
1
1
1
(6)
๐‘›๐‘›3 = 2 (๐œ”๐œ”1 โˆ’ ๐œ”๐œ”2 ), ๐‘›๐‘›8 = โˆš3 ๏ฟฝโˆ’ 3 + 2 (๐œ”๐œ”1 + ๐œ”๐œ”2 )๏ฟฝ
We use the characteristic polynomial approach as given in reference [7] to discuss the
constraints on the qutrit density matrix๐œŒ๐œŒ. For it to be a physical quantity it must be Hermitian,
of unit trace, and positive semidefinite. The last condition implies that all 3 eigenvalues of ๐œŒ๐œŒ
are non-negative. These constraints translate into the following 3 relations.
(i)
(ii)
(iii)
๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ) = 1
๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ2 ) โ‰ค 1
3๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ2 ) โˆ’ 2๐‘‡๐‘‡๐‘‡๐‘‡(๐œŒ๐œŒ3 ) โ‰ค 1
(7a)
(7b)
(7c)
Applying them to the qutrit density matrix leads to the following relations.
(i)
๐œ”๐œ”1 + ๐œ”๐œ”2 + ๐œ”๐œ”3 = 1
(8a)
3
This is the normalization condition.
(ii)
(iii)
1
โˆ‘3๐‘–๐‘–=1 ๏ฟฝ๐œ”๐œ”2๐‘–๐‘– + ( ๐‘Ž๐‘Ž2๐‘–๐‘– + ๐‘ž๐‘ž๐‘–๐‘–2 )๏ฟฝ โ‰ค 1
(8b)
2
1
1
โˆ‘3 ๐œ”๐œ” (๐‘Ž๐‘Ž2๐‘–๐‘– + ๐‘ž๐‘ž๐‘–๐‘–2 ) โ‰ค ๐œ”๐œ”1 ๐œ”๐œ”2 ๐œ”๐œ”3 + (๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž3 ๐‘ž๐‘ž1 + ๐‘Ž๐‘Ž3 ๐‘Ž๐‘Ž1 ๐‘ž๐‘ž2 + ๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž2 ๐‘ž๐‘ž3 โˆ’ ๐‘ž๐‘ž1 ๐‘ž๐‘ž2 ๐‘ž๐‘ž3 ) (8c)
4 ๐‘–๐‘–=1 ๐‘–๐‘–
4
In reference [5, 6], these constraints were given in a basis in which all ๐‘ž๐‘ž๐‘–๐‘– are zero and were
further used to define an ellipsoid and a vector. The unitary dynamics of qutrit was also
presented in terms of geometric transformations of these two entities.
Here we show that an alternative scheme containing only 3 dimensional vectors is another
possibility. For that we define (i) two scalars๐‘“๐‘“ , ๐‘”๐‘”, and (ii) components of a vector R in terms
of the density matrix parameters.
๐‘“๐‘“ = ๐œ”๐œ”2 ๐œ”๐œ”3 + ๐œ”๐œ”3 ๐œ”๐œ”1 + ๐œ”๐œ”1 ๐œ”๐œ”2,
(9a)
1
๐‘”๐‘” = ๐œ”๐œ”1 ๐œ”๐œ”2 ๐œ”๐œ”3 + 4 (๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž3 ๐‘ž๐‘ž1 + ๐‘Ž๐‘Ž3 ๐‘Ž๐‘Ž1 ๐‘ž๐‘ž2 + ๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž2 ๐‘ž๐‘ž3 โˆ’ ๐‘ž๐‘ž1 ๐‘ž๐‘ž2 ๐‘ž๐‘ž3 )
๐‘…๐‘…๐‘–๐‘– =
1
4
(๐‘Ž๐‘Ž2๐‘–๐‘– + ๐‘ž๐‘ž๐‘–๐‘–2 ),
(9b)
(9c)
It is to be noted that the scalar quantity ๐‘”๐‘” must be non-zero and positive and so the values of
(๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘ž๐‘ž๐‘–๐‘– ) which make it negative are non-physical. Then inequalities in eqns. (8b) and (8c) can
be rewritten using eqns. (9a-c) as
1
๐‘“๐‘“
1
๐‘”๐‘”
โˆ‘3๐‘–๐‘–=1 ๐‘…๐‘…๐‘–๐‘– โ‰ค 1
(10a)
โˆ‘3๐‘–๐‘–=1 ๐œ”๐œ”๐‘–๐‘– ๐‘…๐‘…๐‘–๐‘– โ‰ค 1
(10b)
Define the 3-dimensional vectors
๏ฟฝ๏ฟฝโƒ—
๐›€๐›€ = ๏ฟฝโˆš๐œ”๐œ”1 , โˆš๐œ”๐œ”2 , ๏ฟฝ๐œ”๐œ”3 ๏ฟฝ
๐‘…๐‘…
๐‘…๐‘…
๐‘…๐‘…
๐ฎ๐ฎ
๏ฟฝโƒ— = {๐‘ข๐‘ข1 , ๐‘ข๐‘ข2 , ๐‘ข๐‘ข3 } = ๏ฟฝ๏ฟฝ ๐‘“๐‘“1 , ๏ฟฝ ๐‘“๐‘“2 , ๏ฟฝ ๐‘“๐‘“3 ๏ฟฝ
๐œ”๐œ”1 ๐‘…๐‘…1
๐ฏ๐ฏ๏ฟฝโƒ— = {๐‘ฃ๐‘ฃ1 ,๐‘ฃ๐‘ฃ2 , ๐‘ฃ๐‘ฃ3 } = ๏ฟฝ๏ฟฝ
๐‘”๐‘”
(11a)
๐œ”๐œ”2 ๐‘…๐‘…2
,๏ฟฝ
๐‘”๐‘”
(11b)
๐œ”๐œ”3 ๐‘…๐‘…3
,๏ฟฝ
๐‘”๐‘”
๏ฟฝ
(11c)
4
These vectors are always in the positive octant of a sphere by construction. The two inequalities
given in eqn. (11a-b) assume very simple forms as constraints on the lengths of these 3dimensional vectors.
๏ฟฝ๏ฟฝโƒ— | = 1
|๐›€๐›€
(12a)
๏ฟฝโƒ—. ๐’—๐’—
๐’—๐’—
๏ฟฝโƒ— โ‰ค 1
(12c)
๏ฟฝโƒ—. ๐’–๐’–
๐’–๐’–
๏ฟฝโƒ— โ‰ค 1
(12b)
A Useful Combination: Expressing two 3-dimensional constraints by a single vector
It should be noted that eqns. (12b-c) lead to 5 possible combinations.
(i)
(ii)
(iii)
๐‘ข๐‘ข = |๐’–๐’–
๏ฟฝ๏ฟฝโƒ—| = 1, ๐‘ฃ๐‘ฃ = |๐’—๐’—
๏ฟฝโƒ—| = 1: Pure states.
|๐’–๐’–
๏ฟฝโƒ—| < 1, |๐’—๐’—
๏ฟฝโƒ—| = 1 and |๐’–๐’–
๏ฟฝโƒ—| = 1, |๐’—๐’—
๏ฟฝโƒ—| < 1: Mixed States
|๐’–๐’–
๏ฟฝโƒ—| < 1, |๐’—๐’—
๏ฟฝโƒ—| < 1, | ๐’–๐’–
๏ฟฝโƒ—| < |๐’—๐’—
๏ฟฝโƒ—| or | ๐’–๐’–
๏ฟฝโƒ—| > |๏ฟฝ๐’—๐’—โƒ—|: Mixed States
For the purpose of expressing the two length constraints by constraints on a single vector, we
define a new vector as a simple combination of the two.
๏ฟฝ๐‘ฒ๐‘ฒ
๏ฟฝโƒ— = ๐Ÿ๐Ÿ ๐œถ๐œถ (๐’–๐’–
๏ฟฝโƒ— + ๐’—๐’—
๏ฟฝโƒ—)
๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ
(14a)
๐Ÿ๐Ÿ
Its length is given by
๏ฟฝ๏ฟฝโƒ—| =
๐พ๐พ = |๐‘ฒ๐‘ฒ
๐Ÿ๐Ÿ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ
๐œถ๐œถ
๐Ÿ๐Ÿ
โˆš๐‘ข๐‘ข2 + ๐‘ฃ๐‘ฃ 2 + 2๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข,
(16)
Here ๐›ผ๐›ผ is the angle between the two vectors ๏ฟฝ๐’–๐’–โƒ— and ๐’—๐’—
๏ฟฝโƒ—. The maximum and minimum values of
the new vector are obtained as
(i)
(ii)
๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 1 corresponds to
๐‘ข๐‘ข = |๏ฟฝ๏ฟฝโƒ—
๐’–๐’–| = 1, ๐‘ฃ๐‘ฃ = |๐’—๐’—
๏ฟฝโƒ—| = 1: Pure states.
๐พ๐พ < 1 corresponds to
|๐’–๐’–
๏ฟฝโƒ—| < 1, |๐’—๐’—
๏ฟฝโƒ—| = 1, and|๐’–๐’–
๏ฟฝ๏ฟฝโƒ—| = 1, |๐’—๐’—
๏ฟฝโƒ—| < 1: Mixed States
(iii)
|๐’–๐’–
๏ฟฝโƒ—| < 1, |๐’—๐’—
๏ฟฝโƒ—| < 1, | ๐’–๐’–
๏ฟฝโƒ—| < |๐’—๐’—
๏ฟฝโƒ—| , and|๐’–๐’–
๏ฟฝโƒ—| > | ๐’—๐’—
๏ฟฝโƒ—|: Mixed States
๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 0 corresponds to
๐‘ข๐‘ข = 0 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘ฃ๐‘ฃ = 0: Maximum mixed states
5
It should be noted that this vector does not capture the full 6 degrees of freedom represented by
vectors ๏ฟฝ๏ฟฝโƒ—
๐’–๐’– and ๏ฟฝ๐’—๐’—โƒ—. Still it is a useful combination for deciding the purity of a state.
Visualization of the qutrit states in 3-dimensions
The way to visualize the qutrit states is as follows.
(i)
The states are confined inside the positive octant of a 3 dimensional sphere of unit
radius. This is due to the fact that the components of the vectors are always positive
by construction.
(ii)
The pure qutrit states are characterized by points on the surface whose distance from
the center is given by ๐พ๐พ = 1. It is bounded by 0 โ‰ค ๐›ผ๐›ผ โ‰ค
๐œ‹๐œ‹
2
๐œ‹๐œ‹
and 0 โ‰ค ๐œ’๐œ’ โ‰ค 2 . It should
be noted that the โ€œpure qutrit state surfaceโ€ thus obtained is the surface of the positive
octant of the sphere and not the whole sphere. It is somewhat similar to the case with
the Bloch ball of a qubit.
(iii)
The mixed states reside inside the volume interior to the โ€œpure qutrit state surfaceโ€.
This is similar to the Bloch ball of a qubit.
(iv)
The maximum mixed state resides at the center.
4. CONCLUSIONS
In this work we have shown that after applying the positivity constraints to the qutrit density
matrix one is left with 6 degrees of freedom. The resulting 6-dimensional qutrit state space
can be alternatively visualized in three dimensions using 2 three-dimensional vectors. This is
yet another approach to this problem alongside a similar one in [5,6] and also to the idea of
hyper-entanglement [7,8]. In future, the effect of unitary transformations on these vectors and
relation to Heisenberg-Weyl algebra will be investigated. The problem of applying these ideas
to the higher-dimensional Hilbert spaces of qudits and effect of quantum error correcting
codes will be explored as well.
5. ACKNOWLEDGEMENT
6
I thank Jacob Taylor (NIST and QuICS, University of Maryland) for encouragement and
discussions.
6. REFERENCES
[1] S. K. Goyal, B. N. Simon, R. Singh, and S. Simon, โ€œGeometry of the generalized Bloch
sphere for qutrits โ€œ, arXiv: 1111.4427
[2] Istok P. Mendas, โ€œThe classification of three-parameter density matrices for a qutritโ€, J.Phys.
A: Math. Gen. 39 (2006) 11313-11324
[3] G. Sarbicki and I. Bengtsson, โ€œDissecting the Qutrit โ€œ, J. Phys. A: Math. Theor. 46, 035306
(2013)
[4] Ingemar Bengtsson, Stephan Weis and Karol Zyczkowski, โ€œGeometry of the set of mixed
quantum states: An apophatic approachโ€œ, arXiv: 1111.4427v2
[5] Pawel Kurzynski, Adrian Kolodziejski, Wieslaw Laskowski, and Marein Markiewicz,
โ€œThree-dimensional visualization of a qutritโ€, arXiv:1601.07361v1
[6] Pawel Kurzynski, โ€œMulti-Bloch Vector Representation of the Qutritโ€, arXiv: 0912.3155v1
[7] Omar Gamel, โ€œEntangled Bloch Spheres: Bloch Matrix and Two Qubit State Spaceโ€,
arXiv:1602.01548v1
[8] Zhenda Xie, Tian Zhong, Sajan Shrestha, XinAn Xu, Junlin Liang, Yan-Xiao
Gong, Joshua C. Bienfang, Alessandro Restelli, Jeffrey H. Shapiro, Franco N. C. Wong,
and Chee Wei Wong โ€œHarnessing high-dimensional hyperentanglement through a biphoton
frequency combโ€,Nature Photonics 9, 536โ€“542 (2015)
7