Proton Detection in the Spectrometer aSPECT M. Simson1,4, H. Angerer1, F. Ayala-Guardia2, S. Baeßler2, M. Borg2, J. Byrne3, K. Eberhardt2, F. Glück2, M. van der Grinten3, W. Heil2, I. Konorov1, G. Konrad2, R. Munoz-Horta2, G. Petzoldt1, Y. Sobolev2, H.-F. Wirth1, O. Zimmer1,4 1 2 TU München Johannes-Gutenberg-Universität Mainz 3 University of Sussex 4ILL Grenoble [email protected] Outline • The “old” Detector – Setup – Performance during the beam times – Systematic investigations • A new Detector – Detection principle – First results with a test detector – Outlook: The “new” detector • Conclusion 2 Digital electronics UHV-gate valve ExB electrodes 3 Detector & Preamplifier (~ -30 kV) The aSPECT Detector • Si-PIN Diode – 25 Strips – Strip size 0.8 x 25 mm2 – Entrance Window 67 nm (40 nm Si3N4 + 27 nm SiO2) 4 Readout Electronics 5 Pulseheight Spectra Detector at 30 kV Pulseheight Spectra for 50 V and 800 V at the analyzing plane 6 Background (800 V) subtracted spectra Offline Data Analysis Single proton events: High noise, low signal: background-ratio (~10:1)! Bad separation of proton- and background-peak in the pulse height spectrum Fit of the events with theoretical known pulse function 7 Diode Characteristics Det. 2: Does not detect protons any more 8 Det. 4: Still detecting protons Proton Source paff: “proton accelerator with femto ampere flux“ Detector Specs: – – – – 9 Proton energy 10-35 keV Flux: nA to several CPS Two monitor detectors Other ions possible A.R. Müller et al. submitted to NIM A Between the Strips Gap between the strips: 200 µm Î Small, movable aperture ( Ø 0.2 mm) before the detector 10 Submitted to NIM A Temperature effects Î Cooling the setup reduces the amount of noise significantly 11 A new detector type • New Type: Silicon Drift Detector (SDD) • Principle: p-doped backside p-doped rings Potential Valley e- drift to a small anode in the middle 12 P. Lechner et. al. , XRS 2004 33 256-261 SDD Test Detector • Supplied by HLL / PNSensor • Features: – Active area: 30 mm2 – Integrated FET – Mounted ready to use – Mounted on a Peltier element – Optimized preamp + shaper – Integrated temperature diode – Different entrance windows available 13 First Spectra with the SDD First protons on the SDD: Detector at room temperature Submitted to NIM A Energy Calibration with a 55Fe source: Mn-Kα − FWHM @ -13 °C: ~ 165 eV 14 Submitted to NIM A First Spectra with the SDD II Comparison: protons – electronic noise Submitted to NIM A Protons on the cooled detector: Impact energy 12 keV Temperature -4 °C 15 Charge Collection Efficiency • 3 part function • 4 Parameters – S : Minimum (starting point) – τ : Steepness – c : Shape – l : Depth 16 Simulations Simulations done with SRIM 17 Questions: How much energy is detected for each proton? How many protons are backscattered? Is there an angular / energy dependence? From Measurement to CCE EXYZ-File Calculate ΔE for each line Tune the CCE parameters to fit the measurements Multiply it by the CCE Integrate over the complete track Artificially broaden the simulation by the noise S = 0.41 τ = 75 nm c=2 l = 50 nm 18 A new detector for aSPECT active area: 3 x 100 mm² 14 mm Temperature diode 34 mm 19 A new detector for aSPECT II • Advantages: – Noise performance comparable to the test detector – HV only ~ 15 kV – New (simplified) detector mechanics – Simplified preamplifier (based on 3 Amptek A250) • Disadvantages: – Loss of spatial resolution – (Slightly) reduced count rate 20 Conclusion • First beam times with aSPECT completed • Present detector performance not satisfying • New SDD detector successfully tested • SDDs will be ready for the next beam time at the ILL in autumn 21 Online Trigger • No external trigger Î self-triggering system • Signals are shifted through time bins • Trigger settings: – W1: Long window (baseline): 512 bins – W2: Short Window (event): 16 bins – Threshold: 15 ADCChannels – Delay: 3 22 Magnetic shield High magnetic field might disturb other experiments -> magnetic shield: – 4 poles 0.2x0.2x4 m – 2 plates 1.8x1.8x0.1 m – ~10 t iron 23 Coupling Constants of the Weak Interaction Coupling Constants in Neutron Decay p = (udu) u Nucleosynthesis e- gV, gA p νe W± n Solar cycle e+ W± νe p + p → 2H+ + e+ + νe 24 νe n e+ n + e+ → p + νe Neutrino Detection (SNO, CC) νe 2H+ p+p W± n + ν e → p + e- n → p + e- + ν e νe p W± d n = (ddu) 2H+ e- W± p+p e- p+p W± e- p + e- + p → 2H+ + νe 2H+ νe νe + 2H+→ p + p + e- Standard Model Test Cabibbo-Kobayashi-Maskawa-Matrix Condition of Unitarity • B/D Mesons • Superallowed Fermi Decays • Neutron Decay • Kaon Decays • Hyperons • Pion Decay 25 Situation 2004 Ke3 and Lifetime Kμ2 measurements New Neutron Measurement 0.980 Unitarity of the2005] CKM Matrix Vus [Blucher et al., CKM 2 Vud = 1 − Vus + Vub 2 0.975 Vud Neutron Measurements needed: • Neutron lifetime τn 0+→ 0+ [Marciano, Sirlin, 2005] τn [Serebrov 05] 0.970 ( τ n −1 ∝ GF2Vud2 1 + 3 λ 2 • Beta Asymmetry A(λ) ) ; λ = gA/gV 2 τn [PDG2006] A [PERKEO [PERKEO II] II] A 0.965 -1.25 -1.26 -1.27 -1.28 λ = gA/gV Fermi-Transition: g V = GF ⋅Vud Gamow-Teller-Transition: g A = GF ⋅Vud ⋅ λ 26 A = −2 λ + Re λ 1+ 3 λ 2 • Neutrino-Electron-Correlation a(λ) a= 1− λ 2 1+ 3 λ 2 Determination of λ -1,255 Yerozolimskii, 1997 Stratowa, 1978 Liaud, 1997 Unitarity, PDG2004 λ -1,265 PERKEO, 1986 -1,275 PERKEO II, 2002 Unitarity, PDG2006 Unitarity, PERKEO II, 1997 Serebrov 05 Byrne, 2002 -1,285 • Different Systematics Î Measurement of a is independent of possible errors in A • An accuracy of Δa/a < 1% is needed ! 27 Information in the Proton Spectrum 28 The spectrometer aSPECT SPECTrometer for a 29 30 Properties of the Detector • Diode Î IV characteristics • Detection performance – Different impact angles – Different proton energies – Gaps between the strips • Temperature effects 31 Diode Characteristics Det. 2: Does not see protons any more Det. 4: Still seeing protons 32
© Copyright 2025 Paperzz