Universidad Nacional Mayor de San Marcos VI Simposio Internacional de Matemática Aplicada 20-24 de Julio 2015 Acta de Resúmenes Lima-Perú Universidad Nacional Mayor de San Marcos Rector de la Universidad Pedro Cotillo Zegarra Vicerrectora Académica Antonia Castro Rodrı́guez Vicerrector de Investigación Bernardino Ramı́rez Bautista Decana de la Facultad Doris Gómez Ticerán Universidad Nacional Mayor de San Marcos Facultad de Ciencias Matemáticas VI Simposio Internacional de Matemática Aplicada Comisión Organizadora José Pérez Arteaga (Presidente) Jaime Muñoz Rivera Moisés Izaguirre Maguiña Yolanda Santiago Ayala Julio Flores Dionicio Comité Cientı́fico Jaime Muñoz Rivera, LNCC/RJ-Brasil Verónica Poblete, U. Chile/Chile Marcelo Cavalcanti, UEM/Paraná-Brasil Octavio Vera Villagrán, UBB/Conc. Chile Luis Carrillo Dı́az, UNMSM/Lima-Perú Auspiciadores Vicerrectorado Académico Vicerrectorado de Investigación Facultad de Ingenierı́a Industrial Facultad de Quı́mica e Ingenierı́a Quı́mica Facultad de Ingenierı́a Electrónica y Eléctrica Facultad de Ing. Geológica, Minera, Metalúrgica y Geográfica Presentación La Facultad de Ciencias Matemáticas de la Universidad Nacional Mayor de San Marcos, les expresa su más cálida bienvenida al VI Simposio de Matemática Aplicada, el cual en esta oportunidad congrega a cientı́ficos del Brasil, Chile y Perú. La realización de este Simposio, es fruto del esfuerzo de muchas voluntades, que confluyen en la participación de nuestros ilustres visitantes, quienes junto a los conferencistas locales, darán realce a este magno evento. Mención especial dedicamos al Profesor Dr. Jaime Edilberto Muñoz Rivera, quien es el principal artı́fice de este evento, ya que haciendo gala de una profunda identificación con su alma mater, apoya constantemente las diversas actividades de nuestra Facultad, ya sea propiciando la realización de estudios de postgrado de nuestros alumnos destacados en importantes Centros de Investigación del exterior, ası́ como convocando periodicamente, en aulas sanmarquinas, a sus ilustres amistades del mundo cientı́fico. Por tal razón, la Comisión Organizadora le expresa su agradecimiento infinito y deseos de que su proficua labor cientı́fica, continue por muchos años más. El Simposio alude a la Matemática Aplicada, lo cual es una tendencia generalizada, en las diversas investigaciones del mundo matemático, que sirven de sustento al desarrollo tecnológico contemporáneo; ası́ observamos que los temas de las conferencias y del Minicurso se ubican en dicha linea, abordando campos tan diversos como Fisica, Quimica, Biologı́a, Economı́a, Ingenierı́a y muchas otras ramas afines. Expresamos nuestro agradecimiento a los Conferencistas, ası́ como a las diversas instancias que hacen posible la realización de este VI Simposio de Matemática Aplicada. La Comisión Organizadora Conferencistas Visitantes Jaime Muñoz Rivera1 UFRJ y LNCC-RJ-Brasil Guiselda Alid Univ. Bio Bio-Chile Xavier Carvajal UFRJ-RJ-Brasil Mauricio Cataldo Uni. Bio Bio-Chile Marcio Jorge Da Silva UE Londrina-Brasil Lucie Harue Fatori UE Londrina-Brasi Hugo Danilo Fernández Sare UFRJ-RJ-Brasil Laura Senos Lacerda Fernández UF Juiz de Fora-Brasil Ma To Fu USP-Brasil Ricardo Fuentes Apolaya UFF-RJ-Brasil Pedro Gamboa Romero UFRJ-RJ-Brasil Erwan Hingant Univ. de Concepción-Chile Adilandri Mércio Lobeiro Univ. Tecnologica de Paraná-Brasil Verónica Poblete Univ. de Chile-Chile Juan Carlos Pozo Vera Univ. Católica de Temuco-Chile Julho Santiago Prates Filho UEM- Brasil Amelie Rambaud Univ. Bio Bio-Chile Carlos Alberto Raposo UF São João do Reis-MG-Brasil Juan Amadeo Soriano Palomino UEM-Brasil Octavio Vera Villagrán Univ. Bio-Bio-Chile Victor Tapia Funes Univ. de Tarapacá-Chile 1 Prof. Honorario de la UNMSM-Perú Conferencistas locales Renato Mario Benazic Tomé UNMSM Eugenio Cabanillas Lapa UNMSM Victor Rafael Cabanillas Zannini UNMSM Luis Enrique Carrillo Dı́az UNMSM Pedro Celino Espinoza Haro UNI Roxana López Cruz UNMSM José Raúl Luyo Sánchez UNMSM Alfonso Pérez Salvatierra UNMSM Mario Piscoya Hermoza2 UNMSM Enrique Vásquez Huamán3 Universidad del Pacı́fico Edgar Diógenes Vera Saravia UNMSM 2 Profesor Emérito de la Universidad Nacional Mayor de San Marcos Ex-Vice Rector Académico UNMSM Ex-Decano FCM-UNMSM 3 Director de Desarrollo de la Universidad del Pacı́fico, profesor del Departamento Académico de Economı́a y miembro del Centro de Investigación de esta casa de estudios. VI SIMPOSIO INTERNACIONAL DE MATEMÁTICA APLICADA 20 al 24 de Julio de 2015 PROGRAMACIÓN HORA 10:00-10:35 LUNES 10:35-11:35 11.35-12:35 12:35-13:10 MARTES E. Vera MIÉRCOLES A. Pérez M. da Silva X. Carvajal R. Benazic A. Mércio Ma To Fu 12:35-13:35 O. Vera JUEVES 09:35-10:35 J. Soriano C. Raposo P. Gamboa V. Tapia VIERNES A. Rodriguez R. Fuentes L. Lacerda J. Luyo CLAUSURA 15:00-15:35 15:35-16:35 16:35-17:35 17:35-18:35 18:35-19:35 INAUGURACIÓN Conferencia Inaugural J. Muñoz Intermédio Musical Artístico Minicurso L. Carrillo L. Fatori R. Cabanillas E. Hingant E. Cabanillas J. Pozo P. Espinoza A. Rambaud Minicurso Minicurso Minicurso 17:35 -18:10 R. López 18:10-19:10 V. Poblete H. Fernández 17:35-18:10 E. Vásquez M. Cataldo 18:10-19:35 MESA REDONDA “La Universidad en Latinoamérica” CENA Conferencistas: Locales □ Visitantes□ VI SIMPOSIO INTERNACIONAL DE MATEMÁTICA APLICADA 20 al 24 de Julio de 2015 Detalle de la Programación Lunes 20 HORA 15:00-15:35 15:35-16:35 16:35-17:35 17:35-18:35 18:35-19:35 LUNES INAUGURACIÓN Conferencia Inaugural J. Muñoz Intermédio Musical Artístico Minicurso L. Carrillo L. Fatori Lunes 20 15:00-15:35 Inauguración Palabras del Presidente de la Comisión Organizadora Palabras de la Decana de la Facultad de Ciencias Matemáticas 15:35-16:35 Conferencia Inaugural “Estabilidad de sistemas dinámicos con múltiples mecanismos disipativos” Dr. Jaime Muñoz Rivera. 16:35-17:35 Intermedio Musical Artístico 17:35-18:35 Minicurso “Semigrupos aplicados a finanzas” Dr. Luis Carrillo Díaz. 18:35-19:35 Conferencia “The Lack of Exponential Stability to Boundary Dissipative Plates” Dra. Luci Harue Fatori. Martes 21, Miércoles 22 y Jueves 23 HORA 10:00-10:35 MARTES E. Vera MIÉRCOLES A. Pérez 10:35-11:35 11.35-12:35 12:35-13:10 M. da Silva X. Carvajal R. Benazic A. Mércio Ma To Fu 12:35-13:35 O. Vera 15:00-15:35 15:35-16:35 16:35-17:35 R. Cabanillas E. Hingant E. Cabanillas J. Pozo P. Espinoza A. Rambaud Minicurso 17:35 -18:10 R. López 18:10-19:10 V. Poblete Minicurso H. Fernández Minicurso 17:35-18:10 E. Vásquez 17:35-18:35 18:35-19:35 M. Cataldo JUEVES 09:35-10:35 J. Soriano C. Raposo P. Gamboa V. Tapia 18:10-19:35 MESA REDONDA “La Universidad en Latinoamérica” CENA Martes 21 Mañana 10:00-10:35 “Por qué álgebra geométrica ?” Dr. Edgar Vera Saravia. 10:35-11:35 “Taxas de decaimento para sistemas de Timoshenko não-homogêneos fracamente dissipativos” Dr. Marcio A. Jorge da Silva. 11:35-12:35 “Asymptotic behaviour of Solutions to a system of coupled Schrödinger equations” Dr. Xavier Carvajal Paredes. 12:35-13:10 “Singularidades aisladas de foliaciones por curvas” Dr. Renato Benazic Tomé. Tarde 15:00-15:35 “TBA” Dr. Rafael Cabanillas Zannini 15:35-16:35 “A natural slow-fast system arising in the scaling of the Becker-Döring equations” Dr. Erwan Hingant. 16:35-17:35 Minicurso “Semigrupos aplicados a finanzas” Dr. Luis E. Carrillo Díaz. 17:35-18:10 “Bifurcaciones en un modelo depredador-presa tipo Leslie-Gower con retardo” Dra. Roxana López Cruz. 18:10-19:10 “Fractional resolvent families of bounded semivariation” Dra. Verónica Poblete. Miércoles 22 Mañana 10:00-10:35 “Estudio del decaimiento exponencial para un problema de transmisión en termoelasticidad unidimensional” Dr. Alfonso Pérez Salvatierra. 10:35-11:35 “Solução das Equações de Saint Venant pelo Método das Características usando Splines” Dr. Adilandri Mércio Lobeiro. 11:35-12:35 “Energy decay of semilinear wave equations with moving boundary” Dr. Ma To Fu. 12:35-13:35 “TBA” Dr. Octavio Vera. Tarde 15:00-15:35 “No-flux boundary problem involving p(x)-Laplacian-like operators via topological methods” Dr. Eugenio Cabanillas Lapa. 15:35-16:35 “Regularity of abstract Cauchy problem” Dr. Juan Carlos Pozo Vera. 16:35-17:35 Minicurso “Semigrupos aplicados a finanzas” Dr. Luis Carrillo Díaz. 17:35-18:35 “Rates of decay for hyperbolic thermoelasticity” Dr. Hugo D. Fernández Sare 18:35-19:35 “TBA” Dr. Mauricio Cataldo. Jueves 23 Mañana 09:35-10:35 “Exact controllability for Bresse system with variable coefficients” Dr. Juan Amadeo Soriano Palomino. 10:35-11:35 “Existence and uniqueness of solution for a unilateral problem for the Klein-Gordon Operator with Kirchhoff-Carrier nonlinearity” Dr. Carlos Alberto Raposo. 11:35-12:35 “Exact solutions for long waves and blow-up phenomena” Dr. Pedro Gamboa Romero. 12:35-13:10 “Estabilización de sistemas de control no lineal mediante el Principio de Reducción” Mg. Víctor Tapia Funes. Tarde 15:00-15:35 “Numerical irrelevant solutions (NIS) in nonlinear Elliptic eigenvalue problems” Dr. Pedro C. Espinoza Haro. 15:35-16:35 “Stability in transmission problems to multicomponent Timoshenko beams with localized Kelvin-Voigt dissipation” Dra. Amelie Rambaud. 16:35-17:35 Minicurso “Semigrupos aplicados a finanzas” Dr. Luis Carrillo Díaz. 17:35-18:10 “TBA” Dr. Enrique Vásquez. 18:10-19:35 MESA REDONDA “La Universidad en Latinoamérica”. Viernes 24 HORA 10:00-10:35 10:35-11:35 11.35-12:35 12:35-13:10 VIERNES A. Rodriguez R. Fuentes L. Lacerda J. Luyo CLAUSURA 10:00-10:35 “Controlabilidad de cascaras de Naghdi con disipación localizada” Mg. Alexis Rodriguez Carranza 10:35-11:35 “Global solutions and decay of a non linear coupled system with thermo-elastic” Dr. Ricardo Fuentes Apolaya 11:35-12:35 “Riemann solutions for counterflow combustion in light porous foam” Dra. Laura Senos Lacerda Fernández 12:35-13:10 “TBA” Dr. José Luyo Sanchez Resúmenes de las Conferencias Índice 1. Semigrupos de Operadores Aplicados a Finanzas (Minicurso) Luis Enrique Carrillo Dı́az 1 2. Estabilidad de sistemas dinámicos con múltiples mecanismos disipativos Jaime Muñoz Rivera 3 3. Exact controllability for Bresse system with variable coefficients Juan Amadeo Soriano Palomino y Rodrigo André Schultz 5 4. Exact controllability for Bresse system with variable coefficients X. Carvajal, P. Gamboa, O. Vera 8 5. Asymptotic Behaviour of Solutions to a system of coupled Schrodinger equations X. Carvajal 11 6. The Lack of Exponential Stability to Boundary Dissipative Plates L.H. Fatori 12 7. Existence and uniqueness of solution for a unilateral problem for the Klein-Gordon operator with Kirchhof-Carrier nonlinearity C. Raposo, D. Perira, G. Araujo, A. Baena 14 8. Energy decay of semilinear wave equations with moving boundary Ma To Fu 15 9. A natural slow-fast system arising in the scaling of the Becker-Döring equations Erwan Hingant 16 10. Taxas de decaimento para sistemas de Timoshenko não-homogêneos fracamente dissipativos 17 11. Stability in Transmission Problems to Multicomponent Timoshenko Beams With Localized Kelvin-Voigt Dissipation J. Muñoz Rivera, A. Rambaud, O. Vera 18 12. Estudio del decaimiento exponencial para un problema de transmisión en termoelasticidad unidimensional A. Pérez Salvatierra 19 13. Riemann Solutions For Counterflow Combustion in Light Porous Foam L. Lacerda Fernández, G. Chapiro 20 14. Rates of Decay for Hyperbolic Thermoelasticity Hugo Fernández Sare 21 15. No-Flux Boundary Problem Involving p(x)-Laplacian-Like Operators via Topological Methods Eugenio Cabanillas Lapa 22 16. Singularidades Aisladas de Foliaciones por Curvas Renato Benazic Tomé 23 17. Numerical Irrelevant Solutions (NIS) in Nonlinear Elliptic Eingenvalue Problems Pedro Espinoza Haro 24 18. Solução das Equações de Saint Venant pelo Método das Caracterı́sticas usando Splines A. Mercio Lobeiro, M. Vieira Passos, J. Soriano Palomino 26 19. Fractional Resolvent Families of Bounded Semivariation H. Henriquez, V. Poblete, J. Pozo 29 20. Estabilización de Sistemas de Control No Lineal Mediante el Principio de Reducción Victor Tapia Funes 32 21. ¿Porqué Álgebra Geométrica? Edgar Vera S. 33 22. Bifurcaciones en un modelo depredador-presa tipo Leslie-Gower con retardo Roxana López Cruz 34 23. Global solutions and decay of a non linear coupled system with thermoelastic Ricardo Fuentes Apolaya 35 Semigrupos de Operadores Aplicados a Finanzas [Minicurso] Luis Enrique Carrillo Dı́az* [email protected] Resumen Actualmente los especialistas en finanzas, demandan nuevos modelos matemáticos, que les permitan tomar decisiones con el menor riesgo posible. Desde el año 1973, uno de los modelos más requeridos es el de Black-Scholes [2], quienes ganaron el Premio Nobel de economı́a en 1997. Estos modelos son empleados en los Mercados de Opciones Financieras, lo cual está generando el desarrollo de otras áreas de la propia matemática, en la intención de formular y hallar soluciones de nuevos modelos. A grosso modo, las opciones son contratos de compra o venta a futuro, lo cual lleva implı́cita una cuota de incertidumbre, que se desea minimizar sin detrimento de las ganancias. Como la dinámica de tales fenómenos es gobernada por movimientos Brownianos, aparecen comportamientos que no pueden ser representados con los métodos clásicos. Este Minicurso, trata sobre un nuevo enfoque para Valoración de Opciones, el cual hace uso de la Teorı́a de Semigrupos de Operadores y su herramienta principal, el famoso teorema de Hille-Yosida. Se expone principalmente el protocolo para valoración de Opciones europeas y americanas. Respecto a las opciones asiáticas se establecen alternativas de solución en situaciones especiales. Aprovechando la analogı́a entre Opciones Financieras y Opciones Reales, se aborda brevemente el problema de Opciones Reales americanas mediante semigrupo de operadores. Contenido 1. Conceptos fundamentales. Breve introducción a Opciones: Opciones Financieras y Opciones Reales. 2. Teorı́a de Semigrupos: Teorema de Hille-Yosida. 3. Valoración de Opciones Financieras vı́a semigrupos de operadores. • Valoración de Opciones europeas. • Valoración de Opciones americanas. • Valoración de Opciones asiáticas. 4. Valoración de Opciones Reales con semigrupos de operadores. 5. Aplicaciones. * Profesor Principal de la Facultad de Ciencias Matemáticas de la Universidad Nacional Mayor de San Marcos 1 Referencias [1] Belleni-Morante, A. and McBride, A.C. Applied Nonlinear Semigroups; John Wiley and Sons Ltda. (1998). [2] Black, F. and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, (1973) [3] Brandão-Cortazar, Evaluating Environmental Investments: A Real Options Approach PUC-DEI, Rio de Janeiro, Brasil, (2000). [4] Colombo, F.,Giuli, M. and Vespri, V., A semigroup approach to no-arbitrage pricing theory: constant elasticity variance model and term structure models, Progress in Nonlinear Differential Equations and Their Appl. Vol 55, 113-126, Birkhäuser (2003). [5] Cruz-Baez, D.I., & González-Rodrı́guez, J.M., Semigroup Theory Applied to Options. Hindawi Publishing Corporation Journal of Applied Mathematics, 2-3 (2002) 131–139. Copyright (2002) [6] Guimarães Dı́as, M. A., Análise de Investimentos com Opções Reais. Teorı́a e Prática com Aplicações em Petróleo e em outros setores. Volume 1. Pre-Print, Brasil, Junho (2013). [7] Klaus-Engel, One-parameter semigroups for linear evolution equations; Springer, New York, (1999). [8] Kholodnyi, V. A. A Nonlinear Partial Differential Equation for American Options In The Entire Domain Of The State Variable. Nonlinear Analysis, Theory Methods & Application. v, Vol. 30, No. 8, pp. 5059-5070, (1997) [9] Merton, R., Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, pp. 141–183. (1973). [10] Muñoz Rivera, J., Estabilização de Semigrupos e Aplicações. Laboratorio Nacional de Computação Cientifica. Petrópolis, Rio de Janeiro-Brasil (2009). [11] Samanéz, C.P.; Ferreira, L. ; Do Nascimento, C. and Bisso, C., Evaluating the economy embedded in the Brazilian ethanol–gasoline flexfuel car: a Real Options approach,, Vol. 46, No. 14, 1565–1581, http://dx.doi.org/10.1080/00036846.2013.877573 8 Applieds Economics(2014). [12] Sick, G. and Gamba, A., Some Important Issues Involving Real Options: An Overview, University of Calgary, (2005). [13] Trigeorgis, L. Real Options: Managerial Flexibility and Strategy in Resource Allocation, MIT, Press, (1996) 2 Estabilidad de sistemas dinámicos con múltiples mecanismos disipativos Jaime E.Muñoz Rivera Laboratorio Nacional de Computación Cientı́fica Rua Getulio Vargas 333, CEP 25651-075, RJ Brasil Instituto de Matemática-UFRJ Resumen En este trabajo estudiaremos los efectos de diversos mecanismos disipativos. Nuestra intension es mostrar, que la suma de estos mecanismos no mejora en general la estabilización y puede suceder todo lo contrario, esto es, que la estabilización sea muy lenta. En esta conferencia mostraremos como el orden de los mecanismos puede ocasionar diferentes tasas de decaimiento. Adicionalmente mostraremos como se deben ordenar estos mecanismos de tal forma de optimizar la tasa de decaimiento. Los mecanismos que consideraremos en esta exposición son: Mecanismo viscoso de la clase de Kelvin-Voight, mecanismos tipo friccional, mecanismos térmicos. En los siguientes gráficos mostramos el caso de tres componentes, con dos mecanismos disipativos. 3 Este trabajo fue realizado con la colaboración de Mauricio Sepulveda, Universidad de Concepción - Chile, Octavio Vera Villagrán, Universidad del Bio-Bio - Chile y Margareth Alves, Universidad de Visoça - Brasil (UFV). Referencias [1] A. Borichev and Y. Tomilov: Optimal polynomial decay of functions and operator semigroups. Mathematische Annalen. Vol. 347. 2455-478 (2009). [2] K. Liu and Z. Liu: Exponential decay of the energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAMJournal of Control and Optimization Vol. 36. 31086-1098 (1998). [3] M. Alves, J.E. Muñoz Rivera, Mauricio Sepúlveda and O. Vera Villagrán: The lack of exponential stability in certain transmission problems with localize kelvinvoigt dissipation. SIAM Journal of Applied Mathematics Volume 74, Número 2, páginas 345 - 365 (2014). [4] F. Ammar Khodja, A. Benabdallah, J.E. Muñoz Rivera and R. Racke: Energy decay for Timoshenko systems of memory type, J. Differential Equations, 19482–115-(2003). [5] Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys. Vol. 60, 54–69,(2009). [6] Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys. Vol. 56, pages 630–644, (2005). [7] Liu, Z., Zheng, S.: Semigroups associated to dissipative systems, Chapman & Hall/CRC Research Notes in Mathematics, 398 Vol. I (1999). [8] Muñoz Rivera, J.E., Racke, R.: Global stability for damped Timoshenko systems, Discr. Cont. Dyn. Sys. B, 9 1625–1639, (2003). [9] Pruss, J.: On the spectrum of C0-semigroups, Trans. AMS 284, 847–857, (1984). [10] Pruss, J., Batkai, A., K. Engel and Schnaubelt, R.: Polynomial stability of operator semigroups, Math. Nachr. Vol. 279, (1), pages 1425-1440, (2006). [11] Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris, Sér. I 328, 731–734, (1999). [12] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine, 6, 744-746;3, (1921). 4 Exact controllability for Bresse system with variable coefficients Juan Amadeo Soriano Palomino Rodrigo Andre Schulz Departamento de Matemática-DMA, UEM, 87020-900, Maringá, Avda Colombo, 5790, Campus Universitario Maringá, PR, (44)30114040 E-mail: [email protected] Abstract This paper is concerned with the internal exact controllability of a generalized Bresse system with variable coefficients, which the controls functions acts in an arbitrarily small subinterval (l1 , l2 ) of (0, L). Our computation suggests a minimal time control and a region where the controls are more effective. The variable coefficients can be viewed as a generalization of Laplacian operator. The main result is obtained by applying Hilbert Uniqueness Method proposed by Lions, without using the Holmgren’s uniqueness theorem or the hypothesis of equal-speed waves of propagation. Introduction Consider the Bresse system given by ρ ϕ − k(a(x)ϕx + ψ + lω)x − k0 l[ωx − lϕ] = h1 χ, 1 tt ρ2 ψtt − (b(x)ψx )x + k(ϕx + ψ + lω) = h2 χ, ρ1 ωtt − k0 [c(x)ωx − lϕ]x + kl(ϕx + ψ + lω) = h3 χ, (1) in Q = (0, L) × (0, T ) where χ is the characteristic function of (L1 , l2 ) × (0, T ) and (l1 , l2 ) ⊂ (0, L). Assume Dirichlet boundary conditions, that is, ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = ω(0, t) = ω(L, t), for t ∈ (0, T ) and initial conditions given by ϕ(., 0) = ϕ0 , ϕt (., 0) = ϕ1 , ψ(., 0) = ψ0 , ψt (., 0) = ψ1 , ω(., 0) = ω0 , ωt (., 0) = ω1 . (2) (3) The problem of exact controllability of (1) − (3) is formulated as follows: Given T > 0, large enough, to find a Hilbert space H such that, for all initial 5 data {ϕ0 , ϕ1 , ψ0 , ψ1 , ω0 , ω1 } ∈ H, there are controls h1 = h1 (x, t), h2 = h2 (x, t) and h3 = h3 (x, t), h1 , h2 , h3 ∈ L2 (l1 , l2 ) so that the solution {ϕ, ψ, ω} of (1) − (3) satisfies ϕ(x, T ) = ϕt (x, T ) = ψ(x, T ) = ψt (x, T ) = ω(x, T ) = ωt (x, T ) = 0. We apply the Hilbert Uniqueness Method (HUM) to obtain the exact controllability of (1) − (3). 1 Assumptions In the observability and controllability results, we always take T > 2αR where ρ1 ρ2 ρ1 α = max 1, , , , k b0 k0 (4) and R = max l1 , L − l2 , (5) 2 Main result Theorem 1 Assume that a, b, c ∈ W 1,∞ (0, L) satisfying a(x) ≥ 1, b(x) ≥ b0 > 0, and c(x) ≥ 1 in (0, L). Let T > 2αR, α, and R given in (4) and (5), ϕ0 , ψ0 , ω0 ∈ H01 (0, L) and ϕ1 , ψ1 , ω1 ∈ L2 (0, L). There are controls h1 = h1 (x, t), h2 = h2 (x, t), h3 = h3 (x, t) ∈ L2 (0, T ; (l1 , l2 )) such that the solution ϕ, ψ, ω of the Bresse system ρ1 ϕtt − k(a(x)ϕx + ψ + lω)x − k0 l[ωx − lϕ] = h1 χ, ρ2 ψtt − (b(x)ψx )x + k(ϕx + ψ + lω) = h2 χ, ρ1 ωtt − k0 [c(x)ωx − lϕ]x + kl(ϕx + ψ + lω) = h3 χ, ϕ(0) = ϕ(L) = ψ(0) = ψ(L) = ω(0) = ω(L) = 0, ϕ(x, 0) = ϕ0 (x), ϕt (x, 0) = ϕ1 (x), ψ(x, 0) = ψ0 (x), ψt (x, 0) = ψ1 (x), ω(x, 0) = ω0 (x), ωt (x, 0) = ω1 (x), in (0, L) × (0T ), in (0, L) × (0T ) in (0, L) × (0T ) in (0, L) × (0T ) x ∈ (0, L), x ∈ (0, L), x ∈ (0, L), where χ is the characteristic function of interval (l1 , l2 ) checks ϕ(x, T ) = 0, ψ(x, T ) = 0, ω(x, T ) = 0, 6 ϕ( x, T ) = 0, ψ( x, T ) = 0, ωt (x, T ) = 0. (6) References [1] Liu Z, Rao B. Energy decay rate of the thermoelastic Bresse system. Zeitschrift fur AngewandteMathematik und Physik 2009; 60:54-69. [2] Soriano J.A, Muñoz Rivera J.E, Fatori L.H.: Bresse system with indefinite damping. Journals of Mathematical Analysis and Applications; 387: 284290, (2011). [3] Alabau Boussouira F, Muñoz Rivera J.E, Almeida Junior D.S.: Stability to weak dissipative Bresse system. Journals of Mathematical Analysis and Applications; 374(2), 481-498, (2011). [4] Charles W, Soriano J.A, Falcão Nascimento F.A, Rodrigues J.H.: Decay rates for Bresse system with arbitrary nonlinear localized damping. Journal of Differential Equations; 8:2267-2290, (2013). [5] Charles W., Soriano J.A, Schulz R.A.: Asymptotic stability for Bresse system. Journal of Mathematical Analysis and Applications; 412(1), 369-380, (2014). 7 Exact controllability for Bresse system with variable coefficients X. Carvajal, P. Gamboa∗, & O. Vera† Abstract In this work we find exact solutions to the fifth-order KDV-BBM type model that appear to describe the propagation of long waves in shallow water. We study the possibility of blow-up phenomenon of the fifth-order KDV-BBM type model under certain restrictions on the coeffcients. Moreover, by applying the Ince transformation we also establish exact travelling waves solutions to the nonlinear evolution equation Benney-Lin type. 1. Introduction In this paper we will consider the initial value problem associated to the fifth order BBM-KdV type equation ( 1 − 12 ηx2 − 41 η 3 = 0, ηt + ηx − 61 ηxxt + δ1 ηxxxxt + δ2 ηxxxxx + 34 η 2 + γ η 2 xxx x x x η(x, 0) = η0 (x) (1) where η = η(x; t) is a real-valued function, and δ1 > 0, δ2 ; γ ∈ R. This model was recently introduced by Bona et al [1] to describe the unidirectional propagation of water waves. It was formally obtained as a second order approximation from the higher order generalized Boussinesq system derived by Bona et al [2], which describes the two-way propagation of water waves. Finally we consider an equation of Benney-Lin type, that is, ut + λ1 uxxxxx + λ2 uxxxx + uxxx + λ3 uxx + uux = 0 (2) where x ∈ R; t > 0. u = u(x; t) is an unknown real-valued function. λ1 ; λ2 ; λ3 ∈ R are constant to be defined. When λ2 = λ3 , 0; the above equation is known as Benney-Lin equation. ut + λ1 uxxxxx + λ2 (uxxxx + uxx ) + uxxx + uux = 0; x ∈ R; t > 0; ∗ Instituto (3) de Matemática, Universidad Federal de Rio de Janeiro, Av. Athos da Silveira Ramos, P.O. Box 68530, CEP:21945-970, RJ. Brazil E-mail address: [email protected] E-mail address: [email protected] † Departamento de Matemática, Universidad del Bı́o Bı́o, Collao 1202, Casilla 5C,Concepción. Chile E-mail address: [email protected] 8 where u = u(x; t) is an unknown real-valued function, λ1 , λ2 ∈ R and λ2 > 0. It describes the propagation of one-dimensional small but finite amplitude long waves in certain problems in fluids dynamics. In this section we will prove that if γ = −1/30 and δ1 , δ2 satisfy the relation √ 9 388 1069 − 8269 δ1 25650δ2 = 190; then an exact solution of (1) is η(x; t) = sec h2 (kx − ωt) √ !2 + α; 3 1 − tan h(kx − ωt) − sec h(kx − ωt) 2|k| (4) where Ck+ ;Ck− are constants that take values either 0 or 1, then, lim η(x; t) = α − x→±∞ 4k 2 ± C . 3 k (5) 2. Blow-up phenomena We start by recalling the concept of the blow-up solution. Let T be the maximal time of existence of the solution η(x; t). We say that the solution η has the blow-up property in the space X if and only if sup kη(t)kX = ∞. t∈[0,T ) We say that the solution η does not have blow-up property in the space X if sup kη(t)kX < ∞. t∈[0,T ) The solution in (4) have singularity along the line s(t) = where ω ≈ 1.54978 k − ω lnk0 t− , k k t ≥ 0, (6) lnk0 ≈ 0.2492. k For the purpose of completing our paper we present the theorem Theorem 3. Let T be the maximal time of existence of the solution η(x; t) 1 , then the corresponding solution blows-up to the IVP (1). If δ1 > 0 and γ ≤ 42 4 in H if and only if lim inf inf ηx (x, t) = −∞ or lim sup sup ηx (x, t) = ∞ − t→T x∈R t→T − (7) x∈R As our solution satisfies supx∈R |η(x; t)| = ∞, we concludes that η(x; t) have blow-up in H 4 . 9 References [1] Bona, J. L., Carvajal, X., Panthee, M., Scialom, M.: Higher-order models for unidirectional water waves, preprint, 1-31. [2] Bona J. L., Chen M. and Saut J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I. Derivation and linear theory, J. Nonlinear Sci. 12, 283-318, (2002). 10 Asymptotic Behaviour of Solutions to a system of coupled Schrödinger equations Xavier Carvajal∗ Abstract This paper is concerned with the behaviour of solutions to a system of coupled Schrödinger equations iut + ∆u + (α|u|2p + β|u|q |v|q+2 )u = 0, ivt + ∆v + (α|v|2p + β|v|q |u|q+2 )v = 0, u(x, 0) = ϕ(x), v(x, 0) = ψ(x), (1) where x ∈ Rn , α, β ∈ R, p > 0 and q > 0. Which has applications in many physical problems, especially in nonlinear optics. When the solution there exists globally we obtain the growth of the solutions in the energy space. Also we find some conditions in order to obtain blow-up in this space. This work is jointly with Pedro Gamboa. ∗ Instituto de Matemática, Universidad Federal de Rio de Janeiro, Av. Athos da Silveira Ramos, P.O. Box 68530, CEP:21945-970, RJ. Brazil E-mail address: [email protected] 11 The Lack of Exponential Stability to Boundary Dissipative Plates L. H. Fatori ∗ Departamento de Matemática, Universidade Estadual de Londrina 86051-990 Londrina, PR, Brazil J. E. Muñoz Rivera † Laboratório de Nacional de Computação Cientı́fica, LNCC/MCT 25651-070 Petrópolis, RJ, Brazil and Instituto de Matemática, Universidade Federal do Rio de Janeiro 21945-970 Rio de Janeiro, RJ, Brazil Abstract In this work, we consider the plate equation with rotational term, with dissipative mechanism effective in the interior of the domain and/or dissipative boundary condition. More specifically, let Ω be a bounded domain of Rn types star-shape with smooth boundary ∂Ω = Γ0 ∪ Γ1 where Γ0 and Γ1 are closed sets, disjoint and not empty of ∂Ω, as shown below. and we consider the initial-boundary value problem utt − γ∆utt + α∆2 u + a(x)ut = 0, in Ω × R+ , (1) with boundary conditions ∂u = 0, on Γ0 × R+ ∂ν ∂u ∂∆u ∆u = 0, −γ tt + α = kut , ∂ν ∂ν (2) u= ∗ Email: † Email: [email protected]. [email protected]. 12 on Γ1 × R+ (3) and initial conditions u(x, 0) = u0 (x), ut (x, 0) = u1 (x) x ∈ Ω. (4) ∂. where γ , α and k are a positive constant, ∂ν is the normal derivative with ν an unit normal exterior vector to ∂Ω. We suppose that the function a ∈ L∞ (Ω) and a(x) ≥ 0 a.e. Ω. We study the asymptotic properties of the dissipative plate equation. Our main result is that the system (1)-(4) does not decays exponentially to zero. Our proof is based on the Weyl Theorem which means that the essential spectrum radius of an operator S is invariant by compact perturbations. Moreover, from Borichev and Tomilov Theorem, we prove that the solution decays polynomially (slow) as t −1/6 as time goes to infinity. References [1] H. M. Berger,: A new approach to the analysis of large deflections of plates, Journal of Applied Mechanics 22, 465-472, (1955). [2] J. G. Eisley,: Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys. 15, 167-175, (1964). [3] J. H. Ginsberg,: Mechanical and Strutural Vibrations, Wiley, New York, (2001). [4] B. Z. Guo, W. Guo,: Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control, Nonlinear Anal. 66 427-441, (2007). [5] J. E. Lagnese:, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, vol. 10, SIAM, Pennsylvania, (1989). [6] J. Lagnese, G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations 91, (1991), 355-388. [7] J.L. Lions,: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, (1969). [8] M. Reed, B. Simon,: Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, San Diego, (1978). [9] S. Woinowsky-Krieger,: The effect of an axial force on the vibration of hinged bars, J. Appl. Mech. 17 35-36, (1950). [10] Borichev, A., Tomilov, Y.,: Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen 347(2), 455–478, (2009). 13 Existence and uniqueness of solution for a unilateral problem for the Klein-Gordon operator with Kirchhof-Carrier nonlinearity Carlos Raposo∗, Ducival Pereira†, Geraldo Araujo‡& Antonio Baena§ Abstract This work deals with the unilateral problem for the operator of KleinGordon ∂2 u L = 2 − M(|∇u|2 )∆u + M1 (|u|2 )u − f . ∂t Using an appropriate penalization, see [1] and references therein, we obtain a variational inequality for the equation of Klein-Gordon perturbed and then the existence and uniqueness of solutions is analyzed. Acknowledgement. We would like to express our gratitude to the FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais. References [1] C. A. Raposo, D. C. Carvalho, G. M. Araujo and A. Baena. Unilateral Problems For the Klein-Gordon operator with nomliarity of Kirchhoff-Karrier type. Electronic Journal of Differential Equations, Vol. 2015, pp. 1–14, (2015). ∗ Department of Mathematics, Federal University of São João del-Rei. São João del-Rei MG 36307-352, Brazil [email protected] † Department of Mathematics, State University of Pará. Belém - PA 66113-200, Brazil [email protected] ‡ Department of Mathematics, Federal University of Pará Belém - PA 66075-110, Brazil [email protected] § Department of Mathematics, Federal University of Pará Belém - PA 66075-110, Brazil [email protected] 14 Energy decay of semilinear wave equations with moving boundary To Fu Ma Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo 13566-590 São Carlos, SP, Brazil. Abstract This talk is dedicated to the energy stability of weakly damped semilinear wave equations defined on domains with moving boundary. Since the boundary is a function of the time variable, the problem is intrinsically non-autonomous. Under the hypothesis that the lateral boundary is time-like, the solution operator of the problem generates an evolution process U (t, τ) : Xτ → Xt , where Xt are time-dependent Sobolev spaces. Then, for non-contracting domains, we discuss the exponential stability of the energy under time-dependent external forces. References [1] C. Bardos and G. Chen, Control and stabilization for the wave equation. III. Domain with moving boundary, SIAM J. Control Optim. 19 (1981) 123-138. [2] J. Cooper and C. Bardos, A nonlinear wave equation in a time dependent domain, J. Math. Anal. Appl. 42 (1973) 29-60. [3] P. E. Kloeden, J. Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations 246 (2009) 4702-4730. 15 A natural slow-fast system arising in the scaling of the Becker-Döring equations Erwan Hingant Ci2ma - Universidad de Concepción, Chile joint work with Julien Deschamps and Romain Yvinec Abstract We will present the mathematical connection between two classical models of phase transition phenomena describing different stages of cluster growth, namely, the Becker-Döring equations (BD) and the LifshitzSlyozov equation (LS). The former consist in an infinite set of ODE, one for each size of clusters. While, the latter is a PDE on the density function according to a continuous-size variable. Suitable scaling of BD with respect to a small parameter ε has been studied in [1, 4] where the authors rigorously derive LS when the parameter ε → 0. In [2] we derive the same limit in a stochastic context remarking that an underlying system on the small size of clusters behave at a different time scale than the equation on the density function. In the spirit of the works started by Fenichel in the 70’s, see e.g. [3], we take advantage of this sub-system to derive various boundary conditions on the LS equation which were lacking in previous works. Here, we focus on the deterministic version of this result. References [1] Jean-Francois Collet, Thierry Goudon, Frédéric Poupaud, and Alexis Vasseur. The Beker-Döring system and its Lifshitz-Slyozov limit. SIAM Journal on Applied Mathematics, 62(5):1488–1500 (electronic), (2002). [2] Julien Deschamps, Erwan Hingant, and Romain Yvinec. From a stochastic Becker-Dr̈ing model to the Lifschitz-Slyozov equation with boundary value. Preprint arXiv:1412.5025, (2014). [3] Christian Kuehn. Multiple Time Scale Dynamics, volume 191 of Applied Mathematical Sciences. Springer International Publishing, Cham, (2015). [4] Philippe Laurençot and Stéphane Mischler. From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations. Journal of Statistical Physics, 106(5-6):957–991, (2002). 16 Taxas de decaimento para sistemas de Timoshenko não-homogêneos fracamente dissipativos Marcio A. Jorge da Silva∗ [email protected] Resumo Nesta conferência serão abordados resultados sobre a existência e taxas de decaimento para sistemas vigas de Timoshenko não homogêneos fracamente dissipativos. Neste caso, os coeficientes são funções não constantes que podem variar de acordo com material que compõe tais sistemas. Sendo assim, para a estabilização exponencial dos sistemas estudados, uma igualdade local das velocidades de propagação de onda são consideradas como hipóteses. Quando tal condição local não necessariamente vale, então decaimento polinomial é mostrado para os sistemas de Timoshenko em geral. Referências [1] F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl. 327, 525-538,(2007). [2] J. E. Muñoz Rivera and A. I. Ávila, Rates of decay to non homogeneous Timoshenko model with tip body, J. Differential Equations 258 , no. 10, 3468-3490, (2015). [3] A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl. 10, 1016-1020, (2009). [4] S. P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, (1955). ∗ Universidade Estadual de Londrina, Brasil 17 Stability in Transmission Problems to Multicomponent Timoshenko Beams With Localized Kelvin-Voigt Dissipation J. Muñoz-Rivera∗& A. Rambaud†& O. Vera‡ [email protected]; [email protected] ; [email protected] Abstract We consider the transmission problem of Timoshenko’s beam composed of N components, each of them being either purely elastic (E), or a Kelvin-Voigt viscoelastic material (V), or another elastic material inserted with a frictional damping mechanism (F). Such material is illustrated in Figure 1 for N = 7. We prove that the transmission problem is always wellposed. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the beam is exponentially stable if and only if all the elastic components have at least one frictional neighbouring material. Otherwise, the decay is only polynomial of order 1/t 2 . ———————Work partially supported by Fondecyt Project 11130378 and GIMNAP, Depto de Matemática, Universidad del Bio-Bio. ∗ LNCC, Rio de Janeiro, Brasil del Bio-Bio, Concepción ‡ Universidad del Bio-Bio, Concepción † Universidad 18 Estudio del decaimiento exponencial para un problema de transmisión en termoelasticidad unidimensional Alfonso Pérez Salvatierra UNMSM [email protected] Abstract En el presente trabajo estudiamos la existencia, unicidad de solución y el decaimiento exponencial de la energı́a asociada al sistema de un problema de transmisión en termoelasticidad unidimensional representada por, u − αuxx + mθx + f (u) = h1 , en (L1 , L2 ) × (0, ∞) tt (1) θ en (L1 , L2 ) × (0, ∞) t − kθxx + muxt = h2 , v − bv = h , en (0, L ) × (0, ∞) tt xx 3 1 Condiciones de frontera: u(0, t) = θ(0, t) = v(L2 , t) = 0 u(L1 , t) = v(L1, t), αux (L1 , t) − mθ(L1 , t) = bvx (L1 , t) θ (L , t) = 0 x (2) 1 Condiciones iniciales: u(x, 0) = u0 (x), ut (x, 0) = u1 (x), x ∈ (L1 , L2 ) θ(x, 0) = θ0 (x), x ∈ (L1 , L2 ) v(x, 0) = v (x), v (x, 0) = v (x), x ∈ (0, L ) 0 t 1 1 (3) El cuerpo está compuesto por dos partes, una parte elástica y la otra parte termoelástica. La prueba de la existencia y unicidad de la solución al sistema se garantiza por el teorema de Lummer-Phillips y la estabilidad exponencial por criterios del resolvente del operador matriz A(ρ(A). References [1] M. Alves, J.E. Muñoz Rivera, Mauricio Sepúlveda and O. Vera Villagrán: The lack of exponential stability in certain transmission problems with localize kelvinvoigt dissipation. SIAM Journal of Applied Mathematics Volume 74, Número 2, páginas 345 - 365 (2014). 19 Riemann Solutions For Counterflow Combustion in Light Porous Foam Laura Senos Lacerda Fernández∗ & Gigori Chapiro† Abstract In this talk we will consider a system of three evolutionary partial diferential equations that models combustion of light porous foam under air injection. We will see how to reduce this problem to an EDO by a change of variables and we will study the existence of the combustion wave sequences with negative velocity appearing in Riemann solutions. References [1] G. Chapiro, L. Senos; Riemann solutions for counter flow combustion in light porous foam, preprint. [2] G. Chapiro, D. Marchesin, and S. Schecter; Combustion waves and Riemann solutions in light porous foam, J. Hyper. Differential Equations,11, 295, (2014) ∗ Laura Senos Lacerda Fernandez. Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil Tel.: +55-32-2102-3308 Fax: +55-32-2102-3315 E-mail: [email protected] † Grigori Chapiro. Universidade Federal de Juiz de Fora E-mail: [email protected] 20 Rates of Decay for Hyperbolic Thermoelasticity Hugo D.Fernández Sare∗ [email protected] Abstract We study models in thermoelasticity involving non-classical theory for heat conduction. Results about stability of solutions for these systems will be formulated. ∗ Instituto de Matemática. Universidade Federal do Rio de Janeiro - Brasil 21 No-Flux Boundary Problem Involving p(x)-Laplacian-Like Operators via Topological Methods Eugenio Cabanillas Lapa∗ [email protected] Abstract The purpose of this article is to obtain weak solutions for a class nonlinear elliptic problem for the p(x)-Laplacian-like operators under no-flux boundary conditions. Our result is obtained using a Fredholm-type result for a couple of nonlinear operators and the theory of the variable exponent Sobolev spaces. ∗ Universidad Nacional Mayor de San Marcos-Lima-Perú 22 Singularidades Aisladas de Foliaciones por Curvas Renato Benazic Tomé* [email protected] Resumen En esta conferencia hablaremos sobre puntos singulares aislados de un sistema de n ecuaciones diferenciales complejas. Estudiaremos los principales invariantes y las formas normales cuando n = 2 y enumeramos algunos resultados que pueden ser extendidos a dimensiones mayores a 2. * Universidad Nacional Mayor de San Marcos-Lima-Perú 23 Numerical Irrelevant Solutions (NIS) in Nonlinear Elliptic Eingenvalue Problems Pedro C. Espinoza Haro∗ Abstract Consider the following the following kinds of nonlinear elliptic eigenvalue problems: ( −∆u(x) = λf (u(x)) x ∈ Ω (1) u = 0, in ∂Ω where Ω is a bounded open subset in Rn and whose border ∂Ω is smooth and a)f : [0, ∞) → R, es localmente Lipschitz continua b)f has exactly 2m non-negatives zeros s0 = 0 < s1 < · · · < s2m−1 (2) and sig[f (t)] = (−1)i , ∀t ∈ (s , s ), i = 0, 1, . . . , 2m − 1 i i+1 We will say that f in (2) satisfies the “positive area condition” F (s2i+1 ) − F (s2i−1 ) > 0 (3) Rt for each i = 1, 2, . . . , m − 2, where F(t) = 0 f (s)ds. The discrete analogue of (1) by Finite Difference whit suitable grid points at is (4) Ax = λh2 f (x), x ∈ Rn where A is a M-matrix, [9], [10], obtained in the discretization of operator −∆, h is the mesh size and f (x) = (f (x1 ), . . . , f (xn )) is the Nemitskii operator associated to scalar function f . In this note we study the numerically irrelevant solutions (NIS) of the problem (1), which do not approximate analytical solutions. This problem was studied, among others, by E. Bohl [1] and W.J. Beyn & J. Lorenz [2]. Peitgen, Saupe and Schmitt, [6], [7], [8], makes a detailed study applying techniques of topological degree and theory of bifurcations. In this note we obtain, for the one-dimensional case, some features of the NIS. ∗ Universidad Nacional de Ingenierı́a-FIIS-Sección de Posgrado. Ex-docente de la FCM-Universidad Nacional Mayor de San Marcos-Lima-Perú 24 References [1] E. Bohl: On the bifurcation diagram of discrete analogues for ordinary bifurcation problems, Math. Methods Appl. Sci., v. 1, pp. 566-671, (1979). [2] W.-J. Beyn & J. Lorenz: Spurious solutions for discrete superlinear boundary value problems, Computing, v. 28, pp. 42-51 (1982). [3] AK. J. Brown y H. Budin: On the existence of positive solutions for a class of semi linear elliptic boundary value problems, SIAM J. Math Anal. Vol. 10, Nº 5, 76-883,(1979) [4] D.G. de Figueiredo: On the existence of multiple ordered solutions of nonlinear eigenvalue problems, Nonlinear Anal. Theory Meth. Appl., 11 pp. 481-492, (1987). [5] P.C. Espinoza: Positive-ordered solutions of a discrete analogue of a nonlinear elliptic eigenvalue problems, SIAM J. Numer. Anal. Vol. 31, N°3, 760-767, (1994). [6] H. O. Peitgen, D. Saupe y K. Schmitt: Nonlinear elliptic boundary problems versus their finite aproximation: numerically irrelevant solutions, J. Reine Angew Mathematik 322, 74-117, (1981). [7] H. O. Peitgen y K. Schmitt: Positive and spurious solutions of Nonlinear eigenvalue problems, Springer Lectures Notes in Math. 878 275-324, (1981). [8] H. Jürgens, H.O. Peitgen and D. Saupe: Topological perturbations in the numerical study of nonlinear eigenvalue and bifurcation problems, Proceedings Symposium on Analysis and Computation of Fixed Points, S. M. Robinson (ed.), New York-London, (1979). [9] J. Schröder: M-matrices and generalizations using and operator theory approach, SIAM Review 20 213-244, (1978). [10] R.S. Varga: Matirk iterative Analysis, Engle wood Cliffs. New Jersey, (1962). 25 Solução das Equações de Saint Venant pelo Método das Características usando Splines Adilandri Mércio Lobeiro∗ Marlon Vieira Passos† Juan Amadeo Soriano Palomino‡ [email protected] [email protected] [email protected] Resumo O presente trabalho apresenta a solução numérica das equações de Saint Venant conjugando o Método das Características com Interpolações Cúbicas com splines naturais no lugar de Interpolações Lineares usualmente adotadas para encontrar a velocidade média e o perfil da onda em instantes de tempo pre-fixados. 1 Introdução Na Engenharia Hidráulica, as equações de Saint Venant são frequentemente usadas em estudos de escoamento não permanente em canais. No caso particular de canais retangulares de grande largura, as equações são + u ∂h + ∂u = 0 ∂x ∂x (1) ∂h + u ∂u + g ∂x = g(S0x − Sfx ), ∂x (2) ∂h ∂t ∂u ∂t em que u(x, t) é a velocidade média do escoamento (m/s) na direção x; h(x, t) é a profundidade de fluxo (m); x é a distáncia ao longo do canal (m); t é o tempo (s); g é a força gravitacional por unidade de massa (m/s2 ), S0x é a declividade longitudinal e Sfx é a declividade da resistencia hidráulica na direção x, dado por Sfx = |u| u/C 2 h, onde C é a constante de Chézy. ∗ Departamento de Matemática, DAMAT, UTFPR 87301-899, Via Rosalina Maria dos Santos, 1233, bairro Area Urbanizada † Coordenação de Engenharia Civil, COECI, UTFPR Campo Mourão, PR, Fone:(44) 35181400 ‡ Departamento de Matemática-DMA, UEM 87020-900, Maringá, Avenida Colombo, 5790, Campus Universitário-Maringá, PR(44)30114040 26 Deseja-se obter a solução numérica das equações de Saint Venant via Método das Caracterásticas, que é um método consagrado por transformar um sistema de Equações Diferenciais Parciais (EDPs) em um sistema de Equações Diferenciais Ordinárias (EDOs) [1]. Neste caso, as equações (1) e (2) foram transformadas em dx = u + c, (3) dt d (u + 2c) = g(S0x − Sfx ), (4) dt dx = u − c, (5) dt d (u − 2c) = g(S0x − Sfx ). (6) dt As direções em (3) e (5) são chamadas direções características (C + e C − , respectivamente). As quantidades conservadas J + e J − dadas pelas equaç˜es (4) e (6) ao longo das curvas características, são as invariantes de Riemann. Para um estudo de caso, considerou-se um canal retangular de 400 mde comprimento, 5 m de altura, 1 m de largura, declividade S0x = −0.0016 e Sfx = LP 0.5 uL |uL |/C 2 hL + uP |uP |/C 2 hP , onde C = 100 m(1/2) /s. Inicialmente o canal estava cheio de água e a mesma encontrava-se parada, ou seja, a velocidade inicial era zero. Considerou-se a descarga a esquerda, Figura 1, dada pela função vazão qP , definida por qP : R+ −→ R −0.1t se t ≥ 0 e t < 60 −6 + 0.1(t − 60) se t ≥ 60 e t < 80 (7) t 7−→ qP (t) = −4 se t ≥ 80. p A celeridade c é dada por cP = ghp , onde g é a constante gravitacional e hP é a altura. Deseja-se calcular a propagação da onda pelo método das características, ou seja, encontrar a velocidade média e a altura da água em qualquer ponto do canal no decorrer do tempo. Ao aplicar o Método das Características nestas equações, é de praxe utilizar a interpolação linear para encontrar a velocidade e a profundidade da onda em pontos não conhecidos da malha construída para obter a solução numérica [2]. A interpolação linear consiste em unir um conjunto de pontos com uma série de linhas retas. Uma desvantagem desta aproximação é que não há diferenciação nos extremos de cada intervalo [3]. Para sanar esta dificuldade utilizou-se a interpolação com Spline Cúbico Natural. 27 2 Resultados principais Ao utilizar o Spline Cúbico Natural, permitiu-se obter a profundidade e velocidade do escoamento em posições específicas ao longo do comprimento do canal e em instantes de tempo pré-fixados, o que tornou possível estimar tais valores em qualquer ponto do canal, por meio de uma função duas vezes continuamente diferenciável. Sua utilização também otimizou o código teórico por, entre outros fatores, não haver a necessidade de um número grande de subdivisões no intervalo de comprimento estudado, uma clara vantagem se comparada com a Interpolação Linear, que é comumente utilizada. Referências [1] García-Navarro, P.; Brufau, P.; Burguete, J.; Murillo, J.: The Shallow Water Equations: An Example of Hyperbolic System. Monografías de La Real Academia de Ciencias de Zaragoza, 31, 89-119, (2008). [2] Lobeiro, A. M.: Solução das Equações de Saint Venant em uma e duas dimensões usando o Método das Características. Universidade Federal do Paraná, (2012). [3] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical Recipes. The Art of Scientific Computing. New York: Cambridge University Press, (2007). 28 Fractional Resolvent Families of Bounded Semivariation Hernán R. Henrı́quez∗, Verónica Poblete†& Juan C. Pozo‡ [email protected] [email protected] [email protected] Abstract In this work we establish the existence of α-resolvent families of bounded semivariation for all 0 < α < 2. We show that theory of cosine operator families of bounded semivariation is a singular case of the theory of α-resolvent families. Furthermore, by using the α-resolvent families of bounded semivariation and appropriate conditions on the forcing function, we study the existence of strong solutions of non-homogeneous fractional differential equations. We consider the autonomous and the non-autonomous cases. Let X be a Banach space and suppose that A(t) : D(A(t)) ⊆ X → X are closed linear operators with domain D(A(t)) = D for all t ∈ [0; a]; a > 0. We consider the following problem α D u(t) = A(t)u(t) + f (t, u(t)), t ∈ [0, a], t u(0) = x, (1) u ′ (0) = y. where α ∈ (1; 2), and the fractional derivative Dtα is understood in the Caputo sense. If A(t) = A for all t ∈ [0; a], the problem 1 is known in the literature by fractional abstract Cauchy problem associated to A of order α. The existence of solutions of this problem is strongly related with the concept of α-resolvent family {Sα (t)}t≥0 ; introduced by Pruss [5] and widely developed by Bazhlekova [2]. In fact, the fractional differential equation 1 is well posed if and only if A is the infinitesimal generator of an α-resolvent family {Sα (t)}t≥0 . For more information see [[5], Proposition 1.1]. In the autonomous case, we assume that A generates an α-resolvent family {Sα (t)}t≥0 and define the operators P α (t) by Pα (t)z = (gα−1 ∗ Sα ) (t)z, t ≥ 0, z ∈ X. The problem (1) has been studied in [4]. Specifically, they have established the following resul[[4], Theorem 3.5]. ∗ Universidad de Santiago, USACH, Departamento de Matemática, Santiago-Chile. Partially supported by FONDECYT 1130144 and DICYT-USACH. † Universidad de Chile, Facultad de Ciencias, Santiago-Chile. Partially supported by PAIFAC 2015. ‡ Universidad Católica de Temuco, Departamento de Matemáticas y Fı́sica, Temuco-Chile. Partially supported by FONDECYT 3140103. 29 Lemma 0.1. Assume that A generates an α-resolvent family {Sα (t)}t≥0 and x; y ∈ D(A). Let u(t) = Sα (t)x + (g1 ∗ Sα )(t)y + (Pα ∗ f ) (t); 0 ≤ t ≤ a. (2) The following conditions are equivalent: (i) The α-resolvent family {Sα (t)}t≥0 is a family of bounded semivariation on [0; a]. (ii) For all function f ∈ C([0; a]; X), the function uis a strong solution of problem (1). This result can also be obtained from the theory developed by H. Thieme [6]. On the other hand, it has been showed in [3] that for α = 2 the conditions (i) and (ii) of Lemma 0.1 are in turn equivalent to A be a bounded linear operator. In what follows we will show that for 1 < α < 2 there are α-resolvent families of bounded semivariation generated by unbounded operators. The following result establishes the Banach spaces where α-resolvent family of bounded semi-variation can be defined. It is a generalization of the Baillon’s theorem about maximal regularity, [1]. Lemma 0.2. If A : D(A) ⊆ X → X is a closed linear operator which generates an αresolvent family {Sα (t)}t≥0 of bounded semivariation on [0, a] for all a > 0, then the operator A is a bounded operator or X contains a closed subspace isomorphic to c0 (space of sequences convergent to 0). In the non-autonomous case, in equation (1), we consider A(t) = A + B(t); where A generates an α-resolvent family {Sα (t)}t≥0 with bounded semivariation and B : [0; a] → L([D(A)]; X) is a strongly continuous map. Let ∆ = {f (t; s) : 0 ≤ s ≤ t ≤ a}. We denote U (t; s)x = u(t) for (t; s) ∈ ∆. We obtain the following results. Corollary 0.3. The operator U (t; s) and B(t)U (t; s) have unique extensions to X, denoted by U (t; s) and W (t; s), respectively, and U ; W : ∆ → L(X) are strongly continuous operator valued maps. Moreover, Zt U (t; s)x = Sα (t − s)x + Pα (t − ψ)B(ψ)U (ψ; s)xdψ; x ∈ D(A); s U (t; s)x = Sα (t − s)x + Z t s Pα (t − ψ)W (ψ; s)xdψ; x ∈ X; for all 0 ≤ s ≤ t ≤ a. Corollary 0.4. Under appropriate conditions, problem (1) has a unique strong solution given by Zt Z t u(t) = U (t; 0)x + U (ψ; 0)ydψ + Q(t; s)f (s)ds; 0 where Z t Q(t; s)z = s 0 gα−1 (τ − s)U(t; τ)zdτ; z ∈ X; 0 ≤ s ≤ t ≤ a. 30 References [1] J. B. Baillon, Caractére borné de certains générateurs de semi-groupes linéaires dans les espaces de Banach, C. R. Acad. Sci. Paris 290 ,757-760,(1980). [2] E. G. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Eindhoven University of Technology, Eindhoven, . Dissertation,(2001). [3] D. Chyan, S. Shaw, S. Piskarev, On maximal regularity and semivariation of cosine operator functions, J. London Mathematical Society 59 (3), 1023-1032, (1999). [4] F. Li, M. Li, On maximal regularity and semivariation of α-times resolvent families, Advances in Pure Mathematics 3, 680-684,(2013). [5] J. Pruss, Evolutionary Integral Equations and Applications, Monographs Math. 87, Birkhauser Verlag, Basel, (1993). [6] H. Thieme, Differentiability of convolutions, integrated semigroups of bounded semivariation, and the inhomogeneous Cauchy problem, J. Evol. Equ. 8 (2), 283-305, (2008). 31 Estabilización de Sistemas de Control No Lineal Mediante el Principio de Reducción Vı́ctor Tapia Funes* [email protected] Resumen En el presente trabajo se expone las condiciones para la estabilización de sistemas de control no lineal, mediante el principio de reducción, en donde la teoria de la variedad central no se puede aplicar. * Universidad de Tarapaca - Sede Iquique 32 ¿Porqué Álgebra Geométrica? Edgar Vera Saravia* Resumen El Álgebra Geométrica fué creada por Clifford entre los años 1873 y 1879 como una generalización de los Cuaterniones de Hamilton. En esta charla comentaremos el aspecto unificador de esta estructura y su empleo en la fundamentación matemática de la fı́sica y sus aplicaciones en otras áreas. * Departamento de Matemática Universidad Nacional Mayor de San Marcos 33 Bifurcaciones en un modelo depredador-presa tipo Leslie-Gower con retardo Roxana López-Cruz Universidad Nacional Mayor de San Marcos, Perú [email protected] Resumen Este trabajo trata acerca del modelo depredador-presa tipo Leslie-Gower modificado (1), teniendo en cuenta que la población de presas es afectada por un efecto Allee débil, ası́ como por un retardo τ en el crecimiento de la población presa. ! ! x(t − τ) dx = r 1− (x − m) − qy x K dt (1) Xµ : y dy = s 1− y dt nx Usamos el retardo τ como un parámetro de bifurcación. Demostramos la aparición de una bifurcación de Hopf, cuando el retraso discreto cruza cierta magnitud crı́tica. Referencias [1] Pallav. Jyoti Pal, Tapan. Saha and M. Sen Malay Banerjee, A delayed predator-prey model with strong Allee effect in prey population growth, Non Linear Dynamics Vol 68, Issue 1-2, pp 23-42, (2012) [2] A. D. Bazykin, Nonlinear Dynamics of interacting populations, World Scientific, (1998) [3] C. C¸ elik, Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos, Solitons and Fractals 42,1474-1484,(2009) [4] E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Applied Mathematical Modelling 35, 366-381, (2011) [5] Y. Kuang, Delay differential equations with applications in Populations Dynamics, Academic Press, Inc.(1993) [6] H. Smith, An Introduction to Delay Differential Equations with Sciences Applications, Springer (2011) 34 Global solutions and decay of a non linear coupled system with thermo-elastic Ricardo Fuentes Apolaya Universidade Federal Fluminense-Rio de Janeiro-Brasil [email protected] Abstract In this present work, the author prove the existence of global solutions and the decay of nonlinear wave equation with thermo-elastic coupling give by the system of equation: ′′ u (x, t) − µ(t)∆u(x, t) + ′ n X ∂θ i=1 ∂xi (x, t) + F(u(x, t)) = 0, in Q = Ω × (0, ∞) θ (x, t) − ∆θ(x, t) + n X ∂u ′ i=1 ∂xi (x, t) = 0 in Q where u is displacement, θ is absolute temperature, ∆ denotes the Laplace operator, µ is a positive real function of t, F : R → R is continous function such that s.F(s) ≥ 0; Ω is a smooth bounded open set in Rn with boundary Γ. The non linearity F(v) = |v|ρ v usually appears in relativistic quantum mechanic (see Segal [6] o Schiff [5]). Lions [3] studied the wave equation with the same non linearity, i.e., |v|ρ v, in a smooth bounded open domain Ω of Rn and proved existence and uniqueness of solution using both Faedo-Galerkin’s and Compactnesss’ methods. In [1] investigated the system coupling with F(v) = |v|ρ v . They established global existence and strong and weak solutions by Faedo-Galerkin’s method using a basis of the space H01 (Ω) ∩ H 2 (Ω). Based in the theory developed in the papers [1] , [4] and [7] Strauss approximations of F, we will prove that the system coupling has a unique global weak solution. References [1] R. Fuentes, H. Clark and A. Feitosa, On a nonlinear coupled system with internal damping, Electronic Journal of Differential Equations, Volume 2000, 64,1-17, (2000). [2] H. Brezis and T. Cazenave, Non Linear Evolution Equations, Lecture Notes at. Instituto de Matemática, UFRJ, Rio de Janeiro, RJ, Brasil, (1994). 35 [3] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linèares, Dunod-Gauthier Villars, Paris, First edition, (1969). [4] M. Milla and L. A. Medeiros, Hidden regularity for Semilinear Hyperbolic Partial Differential Equations, An. Fac. des Sciences de Tolouse, Volume IX, 01, 103-120, (1988). [5] I. Schiff, Non linear meson theory of nuclear forces, I. Physic. Rev., 84, 19,(1951). [6] I. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math., France, 91, 129-135, (1963). [7] W. Strauss, On weak solutions of semilinear hyperbolic equations, An. Acad. Bras. Ciências Volume 42, 04, 645-651, (1950). 36 Mapa de la Ciudad Universitaria de San Marcos
© Copyright 2026 Paperzz