T h e M a t h e m a t i c s o f H o r s e s B y K a t r i n a A T h e T h e s i s F a c u l t y C a l i f o r n i a T o p o l i n s k i P r e s e n t e d to o f the M a t h e m a t i c s State U n i v e r s i t y P r o g r a m C h a n n e l Islands 2 0 1 3 In Partial F u l f i l l m e n t O f the R e q u i r e m e n t s M a s t e r s o f for the S c i e n c e D e g r e e M S THESIS BY K A T R I N A TOPOLINSKI A P P R O V E D FOR THE M A T H E M A T I C S P R O G R A M Doctor I v o n a G r z e g o r c z y k DoctorGregoryWood D a t e 1/7/2013 Date 1/7/2013 A P P R O V E D FOR THE UNIVERSITY Doctor Gary A. Berg Date 1/7/2013 copyright 2013 Katrina Topolinski ALL RIGHTS RESERVED N o n -E x c l u s i v e D i s t r i b u t i o n L i c e n s e In order for California S t a t e University C h a n n e l Islands (C S U C I) to r e p r o d u c e , t r a n s l a t e a n d distribute your s u b m i s s i o n worldwide through t h e C S U C I Institutional Repository, your a g r e e m e n t to t h e following t e r m s is n e c e s s a r y . T h e a u t h o r s retain a n y copyright currently on t h e item a s well a s t h e ability to submit t h e item to publishers or other repositories. By signing a n d submitting this license, you (the a u t h o r s or copyright owner) g r a n t s to C S U C I t h e nonexclusive right to r e p r o d u c e , t r a n s l a t e ( a s defined below), a n d /or distribute your s u b m i s s i o n (including t h e a b s t r a c t ) worldwide in print a n d electronic format a n d in any m e d i u m , including but not limited to a u d i o or video. You a g r e e that C S U C I may, without c h a n g i n g t h e content, t r a n s l a t e t h e s u b m i s s i o n to any m e d i u m or format for t h e p u r p o s e of preservation. You also a g r e e that C S U C I may k e e p m o r e t h a n o n e copy of this s u b m i s s i o n for p u r p o s e s of security, b a c k u p a n d preservation. You r e p r e s e n t that t h e s u b m i s s i o n is your original work, a n d that you h a v e t h e right to grant t h e rights contained in this license. You also r e p r e s e n t that your s u b m i s s i o n d o e s not, to t h e b e s t of your knowledge, infringe upon a n y o n e ' s copyright. You also r e p r e s e n t a n d warrant t h a t t h e submission c o n t a i n s n o libelous or other unlawful matter a n d m a k e s n o improper invasion of t h e privacy of any o t h e r p e r s o n . If t h e s u b m i s s i o n c o n t a i n s material for which you d o not hold copyright, you r e p r e s e n t that you h a v e obtained t h e unrestricted permission of t h e copyright o w n e r to grant C S U C I t h e rights required by this license, a n d that s u c h third party o w n e d material is clearly identified a n d a c k n o w l e d g e d within t h e text or c o n t e n t of t h e s u b m i s s i o n . You t a k e full responsibility to obtain permission to u s e any material that is not your own. This permission m u s t b e g r a n t e d to you b e f o r e you sign this form. IF THE SUBMISSION IS BASED U P O N WORK THAT HAS BEEN S P O N S O R E D O R S U P P O R T E D BY AN AGENCY O R ORGANIZATION O T H E R THAN C S U C I, YOU R E P R E S E N T THAT YOU HAVE FULFILLED ANY RIGHT O F REVIEW OR O T H E R OBLIGATIONS R E Q U I R E D BY S U C H CONTRACT OR AGREEMENT. T h e C S U C I Institutional Repository will clearly identify your n a m e s a s t h e a u t h o r s or o w n e r s of t h e s u b m i s s i o n , a n d will not m a k e any alteration, other than a s allowed by this license, to your submission. Title ofItem:TheMathematicsofHorses 3 to 5 keywords or p h r a s e s to d e s c r i b e t h eitem:ThesisforMastersofMathematics Authors N a m e(Print):KatrinaTopolinksi Authors Signature Date: 1/11/2013 This is a permitted, modified version of the Non- exclusive Distribution License from M I T Libraries and the University of Kansas A c k n o w l e d g e m e n t s I w o u l d l i k e t o t h a n k m y a d v i s o r ,DoctorI v o n a G r z e g o r c z y k , f o r e n c o u r a g i n g m e t o study something I w a s passionate about, spending m a n y hours helping m e study, and editing m y paper. I could not have done this without her help and support. I would also l i k e t o t h a n kDoctorG r e g o r y W o o d f o r t a k i n g t h e t i m e t o r e a d a n d e d i t m y t h e s i s . I a m so appreciative to T a m m y Terzian for spending countless hours being m y thesis buddy, helping m e edit curves in M a p l e , editing sections of m y thesis, and reassuring m e w h e n I doubted things. I w o u l d also like to thank m y husband, Jacob Topolinski, m y parents, Terry and Will H a m m e r , and m y in- laws, Sheri and R o n Topolinski for encouraging, supporting, and helping m e along the way. letting m e u s e her horses in this study. I owe M o r g a n Gillaspy a big thank you for Also, t h a n k y o u to e v e r y o n e in the M a t h e m a t i c s department for everything they have done for m e throughout m y journey to acquire m y degree. A b s t r a c t T h e r e are m a n y c o m p o n e n t s in the m o v e m e n t of horses that can b e mathematically modeled. In this research w e h a v e classified footprint patterns of various strides and f o u n d an analytical f a m i l y of c u r v e s d e s c r i b i n g s i m p l e j u m p s . T h i s a p p r o a c h is d i f f e r e n t f r o m t h e standard center of mass method typically used in physics, as it is more visual practically useful. W e will s h o w curve fitting for four different horses and the and equations for the curves describing the j u m p s . W e standardize the curves as quartics with prescribed inflection points that contain basic information about each horse. W e will discuss the properties of this family of functions and various mathematical m e t h o d s of c o m p a r i n g the horses. T a b l e o f C o n t e n t s C h a p t e r 1- H o r s e s 1 C h a p t e r 2- Strip Patterns 5 Chapter 3- Physics Model 13 Chapter 4- J u m p 17 Curves Chapter 5- C o m p a r i s o n of Trajectories 24 Chapter 6- Analyzing Space of Trajectories of Horse Jumps 28 Chapter 7- Family of Curves and Future Research 33 Appendix A 36 Appendix B 38 Appendix C 41 Appendix D 44 Bibliography 47 C h a p t e r 1 - H o r s e s In this study w e used seven horses to e x a m i n e their m o v e m e n t s both o n the ground and over obstacles. W e m e a s u r e d the horses' heights, lengths of front and hind legs, g i r t h s , h o r i z o n t a l l e n g t h s , a n d l e n g t h b e t w e e n t h e i r l e g s . F i g u r e 1point1 s h o w s h o w t h e s e measurements were taken. F i g u r e 1point1 H o r s e m e a s u r e m e n t s Carmelita C a r m e l i t a is a t e n - y e a r - o l d C a m a r i l l o W h i t e H o r s e . Height: 5 6 inches Front leg: 2 9 inches H i n d leg: 3 7 inches Girth: 6 6 inches Length: 6 0 inches L e n g t h b e t w e e n legs: 3 1 inches 1 Coyote C o y o t e is a n e l e v e n - y e a r - old A m e r i c a n Q u a r t e r H o r s e . Height: 5 8 inches Front leg: 3 1 inches H i n d leg: 3 7 inches Girth: 7 1 inches Length: 6 0 inches L e n g t h b e t w e e n legs: 3 3 inches Hollywood H o l l y w o o d is a t h r e e - y e a r - o l d A m e r i c a n Q u a r t e r H o r s e . Height: 5 6 inches Front leg: 2 9 inches H i n d leg: 3 9 inches Girth: 6 9 inches Length: 5 9 inches L e n g t h b e t w e e n legs: 3 2 inches 2 Honey H o n e y is a n e i g h t - y e a r - o l d A m e r i c a n P a i n t H o r s e . Height: 5 9 inches Front leg: 3 0 inches H i n d leg: 4 0 inches Girth: 7 1 inches Length: 6 6 inches L e n g t h b e t w e e n legs: 3 4 inches Patriot Patriot is a s i x - m o n t h - o l d C a m a r i l l o W h i t e h o r s e . Height: 5 3 inches Front leg: 3 2 inches H i n d leg: 3 8 inches Girth: 5 3 inches Length: 5 3 inches L e n g t h b e t w e e n legs: 2 7 inches 3 Poker P o k e r is a t h r e e - y e a r - o l d A m e r i c a n M i n i a t u r e H o r s e . Height: 3 2 inches Front leg: 1 6 inches H i n d leg: 1 6 inches Girth: 4 0 inches Length: 3 1 inches L e n g t h b e t w e e n legs: 1 7 inches Roxie R o x i e is a p r e g n a n t s e v e n - y e a r - o l d A m e r i c a n Q u a r t e r H o r s e . Height: 6 0 inches Front leg: 3 3 inches H i n d leg: 4 1 inches Girth: 7 2 inches Length: 6 4 inches L e n g t h b e t w e e n legs: 3 6 inches 4 C h a p t e r 2point1 - S t r i p 2 - S t r i p P a t t e r n s Patterns T h e t e r m strip patterns refers to patters that exhibit s y m m e t r i e s a n d are b o u n d e d b y t w o parallel lines. The possible symmetries of these patterns consist of translations (Figure 2point1 ) , r o t a t i o n s ( F i g u r e 2point2 ) , r e f l e c t i o n s ( F i g u r e 2point3 ) , a n d g l i d e r e f l e c t i o n s ( F i g u r e 2point4 ) . E a c h pattern h a s a " p r e - i m a g e " w h i c h is translated, rotated, reflected, a n d / or g l i d e r e f l e c t e d o n t o itself. T h e patterns continue infinitely and w e usually display t h e m in a horizontal direction. F i g u r e 2point1 Strip pattern obtained by translation of the L s h a p e d motif. T o g e n e r a t e a strip p a t t e r n it is e n o u g h t o d e f i n e a s y m m e t r y ( r u l e ) t h a t t r a n s f o r m s a given motif to the next one. F i g u r e 2point2 s h o w s g e n e r a t i n g p a t t e r n s b y r o t a t i o n s . Rotated 90 degrees clockwise Rotated 90 degrees counterclockwise Rotated 180 degrees F i g u r e 2point2 T h e three d i f f e r e n t types of rotations that can b e u s e d to generate strip patterns. 5 F i g u r e 2point3 s h o w s h o w r e f l e c t i o n s c a n g e n e r a t e p a t t e r n s . and 1m for examples; S e e p a g e 7 a n d 8, m l , m 2, [G]. F i g u r e 2point3.H o r i z o n t a l and vertical r e f l e c t i o n s can b e u s e d to m a k e strip patterns. A g l i d e r e f l e c t i o n t r a n s l a t e s a n d r e f l e c t s a m o t i f t o g e n e r a t e p a t t e r n a s i n F i g u r e 2point4 . S e e p a g e s 7 a n d 8, g 1 a n d m g f o r e x a m p l e s , [ G ] . F i g u r e 2point4.A glide reflection is m a d e w i t h a translation f o l l o w e d b y a reflection. 6 E a c h strip pattern h a s a specific classification b a s e d o n their s y m m e t r i e s . u s e t h e f o l l o w i n g chart t o classify a n y strip p a t t e r n b y its s y m m e t r y g r o u p . We can For a c o m p r e h e n s i v e study of strip patterns, see [G]. A s w e see, there are only seven t y p e s of patterns as classified b y the s y m m e t r y groups. T h e following e x a m p l e s are visual representations of these patterns generalized by footsteps. 7 2point2 - H o r s e Gaits M o s t horses h a v e four gaits that they travel. have m o r e gaits and these are called "gaited horses". the horse and each has a different rhythm. There are several horse breeds that These four gaits c o m e naturally to Every time one or m o r e of a horse's feet 8 t o u c h e s t h e g r o u n d it is c o n s i d e r e d a b e a t . These beats create the different rhythms of each gait. W h e t h e r they are m o v i n g quickly in the gait or slowly in the gait, their feet f o l l o w the s a m e pattern a n d r h y t h m . W e a n a l y z e d patterns m a d e b y h o r s e s in the typical gaits. T h e first a n d s l o w e s t g a i t is t h e w a l k . T h e w a l k is a f o u r b e a t gait. A h o r s e w i l l a l w a y s h a v e t w o or three feet o n the g r o u n d at a n y g i v e n time. F i g u r e 2point5 s h o w s t h e o r d e r that the legs take a step and h o w the four beats of the w a l k are created. (first beat) right hind leg (second b e a t ) r i g h t f o r e (third b e a t ) l e f t h i n d (fourth b e a t ) l e f t f o r e leg leg leg Figure 2point5.Steps of a w a l k i n g horse W e photographed walks of several horses to analyze their patterns. This picture s h o w s the h o o f prints of Patriot at the w a l k . This picture has a sketch edited in over w h e r e e a c h print is in the sand. This picture s h o w s the h o o f prints of R o x i e at the walk. 9 This picture has a sketch edited in over w h e r e e a c h print is in the sand. Figure 2point6.H o o f prints m a d e of t w o h o r s e s w a l k i n g T h i s strip pattern h a s n o vertical reflection, n o horizontal reflection, a n d n o d e g r e e r o t a t i o n , b u t h a s a g l i d e r e f l e c t i o n s o t h a t m a k e s it a g 1 s t r i p p a t t e r n . turns out to be typical for walks. 180 This pattern Please see A p p e n d i x A for m o r e pictures of walking hoof prints. T h e s e c o n d g a i t t h a t w e s t u d i e d is t h e t r o t . T h e trot is a t w o b e a t gait, t h e d i a g o n a l l e g s m o v e t o g e t h e r a n d t h e r e is a m o m e n t o f s u s p e n s i o n w h e n t h e h o r s e is s w i t c h i n g diagonals. First the front left and hind right m o v e f o r w a r d and then the front right and hind left m o v e forward. F i g u r e 2point7 s h o w s h o w t h e l e g s m o v e t o g e t h e r t o c r e a t e t w o b e a t s . (first b e a t ) l e f t f o r e / r i g h t (second b e a t ) r i g h t f o r e / l e f t F i g u r e 2point7.Steps of a trotting horse This picture s h o w s the h o o f prints of C a r m e l i t a at the trot. 10 hind hind T h i s picture h a s a sketch edited in over the h o o f prints in the sand. F i g u r e 2point8.H o o f prints of a horse trotting This strip pattern h a s n o vertical reflection, n o horizontal reflection, a n d n o d e g r e e r o t a t i o n , b u t h a s a g l i d e r e f l e c t i o n s o t h a t m a k e s it a g 1 s t r i p p a t t e r n . analyzing different trots of various horses w e got the s a m e pattern. 180 Again, when Please see A p p e n d i x A f o r m o r e p i c t u r e s of trot h o o f p r i n t s . T h e last g a i t w e s t u d i e d w a s t h e c a n t e r , w h i c h is a t h r e e b e a t gait. O n e hind leg c o n t a c t s t h e g r o u n d first, f o l l o w e d b y t h e o t h e r h i n d leg a n d t h e d i a g o n a l f r o n t leg l a n d i n g at t h e s a m e t i m e , a n d last t h e o t h e r f r o n t l e g l a n d s . T h e last f r o n t l e g t o l a n d is r e f e r r e d t o as the " l e a d " leg. T h e r e is a m o m e n t o f s u s p e n s i o n b e t w e e n e a c h stride o f t h e c a n t e r . F i g u r e 2point9 s h o w s h o w t h e l e g s m o v e a t a c a n t e r o n t h e l e f t l e a d . The horses were on the left lead for our strip patterns. (first b e a t ) r i g h t h i n d leg (second b e a t ) l e f t h i n d / r i g h t (third b e a t ) l e f t f o r e F i g u r e 2point9.Steps of a cantering horse This picture s h o w s the hoof prints of C a r m e l i t a at the canter. 11 leg fore This picture h a s a sketch edited over the prints in the sand. F i g u r e 2point10.H o o f prints of a h o r s e cantering T h i s p a t t e r n c a n b e s k e t c h e d as: Picture shows a pattern represented by two pairs of rightward pointing arrows. T h e r e is n o v e r t i c a l r e f l e c t i o n , n o h o r i z o n t a l r e f l e c t i o n , n o g l i d e r e f l e c t i o n , a n d n o 1 8 0 - d e g r e e r o t a t i o n s o t h a t m a k e s it a 1 1 t y p e t h a t a l l o w s t r a n s l a t i o n s o n l y . includes m o r e canter strip patterns. 12 Appendix A C h a p t e r 3 - P h y s i c s m o d e l In this c h a p t e r w e e x p l a i n t h a t h o w o u r s t u d y is d i f f e r e n t f r o m t h e u s u a l a p p r o a c h of analyzing the actual center of m a s s m o v e m e n t during horse jumping. W h e n a h o r s e is s t a n d i n g still its c e n t e r o f m a s s is l o c a t e d t o w a r d t h e f r o n t o f t h e body, slightly above and behind their elbow. T o find the center of m a s s w e n e e d to d r a w t w o lines on the horse and their intersection gives u s the center of mass. T h e first line is d r a w n f r o m t h e withers, w h i c h is t h e h i g h e s t p o i n t of t h e h o r s e at t h e b a s e of their n e c k , straight d o w n to the ground. T h e s e c o n d line is d r a w n f r o m farthest p o i n t f o r w a r d , w h i c h is t h e p o i n t of their shoulder, t o t h e farthest p o i n t b a c k , w h i c h is t h e p o i n t of t h e b u t t o c k . [W] T h e s t a t i o n a r y c e n t e r o f m a s s i s l a b e l e d C i n F i g u r e 3point1. F i g u r e 3point1 F i n d i n g t h e center of m a s s In our study, w e m a r k e d the point representing the stationary center of m a s s of a h o r s e and tried to describe the m o v e m e n t of the m a r k in h o p e that this w o u l d give u s a g o o d u n d e r s t a n d i n g of the m o v e m e n t . For practical purposes the usual physical model for j u m p i n g that r e d u c e s t h e o b j e c t to a center of m a s s is n o t v e r y u s e f u l f o r p r e d i c t i n g a n animal's position and behavior. A s t h e h o r s e j u m p s , its c e n t e r o f m a s s m o v e s a r o u n d 13 w i t h i n t h e h o r s e ' s b o d y d e p e n d i n g o n t h e p o s i t i o n o f its extremities. During a j u m p to c l e a r a n o b s t a c l e t h e h o r s e m o v e s its n e c k a n d h e a d f o r w a r d , w h i c h c a u s e s t h e c e n t e r of m a s s t o m o v e t o t h e f r o n t , a n d it b e n d s its l e g s u p , w h i c h c a u s e s t h e c e n t e r of m a s s t o m o v e u p as well. body. Theses adjustments change the position of the center of mass within the H o w e v e r , w h i l e t h e h o r s e is in t h e air, t h e r e a r e n o a d d i t i o n a l f o r c e s a c t i n g o n t h e system besides gravity. Therefore, according to laws of physics, the center of m a s s will m o v e along a parabola. T h e ideal case of m o t i o n of a small projectile (or a center of m a s s of a larger o b j e c t ) in a u n i f o r m gravitational field is v e r y w e l l u n d e r s t o o d a n d w a s d e s c r i b e d b y Galileo, Torricelli, a n d N e w t o n a n d its s i m p l i f i e d p a r a b o l i c t r a j e c t o r y p r o v e s essentially correct. S i n c e a h o r s e is quite h e a v y a n d n o t m o v i n g v e r y fast, the air resistance can be neglected. It is n o t h a r d t o d e r i v e t h e e q u a t i o n of t h e p a r a b o l a d e s c r i b i n g t h e m o t i o n of t h e center of m a s s of a j u m p i n g horse. T h e x- axis is parallel t o t h e g r o u n d a n d t h e y- axis perpendicular to the g r o u n d and parallel to the gravitational field lines. W e n e e d to m e a s u r e t h e i n i t i a l h o r i z o n t a l s p e e d b evsubhequalsvsub0cosparenthesisthetaparenthesisa n d t h e i n i t i a l v e r t i c a l s p e e d b e vsubvequalsvsub0sinparenthesisthetaparenthesis,s e e f i g u r e 3point2 F i g u r e 3point2.P a r a b o l i c m o t i o n of an object. U s i n g trigonometry and physics laws of m o t i o n in a u n i f o r m gravitational field and combining horizontal and vertical m o v e m e n t s , w e can derive the algebraic equation for the p a r a b o l i c t r a j e c t o r y i n t h e f o r m yequalsa xsquaredplusb xplusc . 14 W e c a n u s e t h e f o r c e o f g r a v i t yrightar owaboveFsubgequalsnegativem gcaratovery a n d N e w t o n ' s S e c o n d L a wrightarrowabove F equals mrightaowbvea t o rightarrowaboveaequals0cartbovexminusgcartbovey . W e c a n a s s u m e t h e acceleration is c o n s t a n t so w e get t h e f u n c t i o n vparenthesistparenthesisequalsvsub0plusa t , t a k i n g t h e i n t e g r a l of it w e f i n d t above integral symbol above 0 v parenthesis t prime parenthesis d t prime equals t above integral symbol above 0 parenthesis v sub 0 plus a t prime parenthesis d t prime which xparenthesistparenthesisminusxsub0equalsvsubhtplusone-halfa t squared. T h e r e f o r e , o u r c o n s t a n t acceleration f u n c t i o n is x parenthesis t parenthesis equals x sub 0 plus v sub h t plus one- half a sub x t squared. W e k n o w asubxequals0 s o o u r f u n c t i o n w i l l b e c o m e xparenthesistparenthesisequalsxsub0plusvsubht. Similarly, w e f i n d t h a t o u r y f u n c t i o n is y parenthesis t parenthesis equals y sub 0 plus v sub v t minus one- half g t squared. L e t ' s s e txsub0equals0 a n d ysub0equals0 t o p u t t h e o r i g i n a t t h e b e g i n n i n g o f o u r p a r a b o l a . If w e solve f o r t i n xparentheistparenthesisw e o b t a i n t equals x parenthesis t parenthesis divided by v sub h S u b s t i t u t i n g t h a t i n t o yparenthesi tparenthesisw e f i n d y parenthesis t parenthesis equals 0 plus v sub v parenthesis x parenthesis t parenthesis divided by v sub h parenthesis minus one- half g parenthesis x parenthesis t parenthesis divided by v sub h parenthesis squared. C l e a n i n g i t u p b y d r o p p i n g t h eparenthesistparenthesisw e f i n d t h a t t h e e q u a t i o n o f o u r p a r a b o l a i s y equals v sub v divided by v sub h times x minus g divided by 2 v sub h squared times x squared. H e n c e , y i s i n t h e f o r m yequalsb xminusa xsquaredw h e r e agreaterthan0 a n d greaterthan0 . 15 b F i g u r e 3point3.T h e s c h e m a t i c s h o w i n g a h o r s e j u m p i n g If a h o r s e j u m p s optimally a n d w i t h g o o d t i m i n g t h e n the vertex of the p a r a b o l a should b e directly over the obstacle. S i n c e it is h a r d t o c o n t r o l t h e c e n t e r o f m a s s w i t h r e s p e c t t o t h e p o s i t i o n o f t h e horse's body, the parabolic function does not provide a practical description of j u m p s that could s o m e h o w help to predict the actual position of the horse. the c e n t e r of m a s s is n o t h e l p f u l f o r a rider. Therefore, trying to track In our study w e m a r k a specific, easily i d e n t i f i a b l e p o i n t o n t h e h o r s e a n d study its trajectories. 16 C h a p t e r 4 J u m p c u r v e s In o u r study, w e m a r k e d t h e stationary c e n t e r o f m a s s f o r e a c h h o r s e t o o b s e r v e its trajectory w h e n a horse was jumping. W e marked the point representing the center of mass of a standing horse with colored tape and photographed each j u m p to create accurate graphs. The horses were videotaped from the center of the arena with a camera on a tripod to keep consistency. W e h a d f o u r h o r s e s j u m p a 9 - i n c h j u m p a n d a n 18 i n c h j u m p ; w e h a d t w o of those horses also j u m p a 24 inch jump. O n c e t h e v i d e o s w e r e c o m p l e t e d , still i m a g e s w e r e t a k e n f r o m t h e v i d e o a n d p i e c e d t o g e t h e r t o s e e t h e h o r s e ' s m o v e m e n t f l u i d l y a s r e p r e s e n t e d b y F i g u r e 4point1. F i g u r e 4point1.Still i m a g e s f r o m v i d e o p u t t o g e t h e r W e a d d e d a n x- a n d y- axis a n d a grid t o h e l p f i n d t h e c o o r d i n a t e s o f t h e c e n t e r o f mass. E a c h d a r k e r line o n the axis is c o n s i d e r e d t o b e t w o units, so t h e m e s h h a s increments of 1 unit. A pink point w a s put on the intersection of the taped X on the horse t o b e t t e r s e e w h e r e it l a n d e d o n t h e g r a p h . 17 F i g u r e 4point2.H o r s e j u m p i n g w i t h point and grids a d d e d W e m a d e several initial o b s e r v a t i o n s a b o u t t h e trajectories to f i g u r e out w h a t w o u l d b e the best m e t h o d for curve fitting. W e noticed that the sections of the curves w h i l e the horses w e r e over the j u m p are c o n c a v e down. W e also observed that the curves w e r e concave u p after the horse landed, so there w e r e inflection points b e t w e e n the peaks of the j u m p s and landings. W e also s a w that the slope is steeper w h e n t h e h o r s e is l a n d i n g t h a n w h e n t h e h o r s e is t a k i n g off. F i g u r e 4point3.Z o o m e d in i m a g e of f i g u r e 4point2 to better see the c u r v e 18 O u r trajectories of the m a r k e d point could not be represented by lines because the curves h a d various slopes in our graphs; and horses cannot travel forever u p or d o w n . Our g r a p h s c o u l d also n o t b e a q u a d r a t i c c u r v e b e c a u s e o u r g r a p h is n o t s y m m e t r i c a n d t h e r e are t w o d i f f e r e n t c o n c a v i t i e s in o u r g r a p h w h i l e t h e r e is o n l y o n e in a q u a d r a t i c curve. U s i n g s o f t w a r e w e t h e n t r i e d f i t t i n g o u r t r a j e c t o r i e s i n t o a c u b i c c u r v e t o s e e i f it w o u l d b e a g o o d fit a n d m a d e the f o l l o w i n g observation. T h e o r e m : A cubic f u n c t i o n is n o t a g o o df i t curve f o r h o r s e j u m p i n g . P r o o f : C o n s i d e r g e n e r a l c u b i c w i t h t h e e q u a t i o n yequalsa xcubedplusb xsquaredpluscxplusd , d i v i d i n g e v e r y t h i n g b y a w e c a n s i m p l i f y t h e e q u a t i o n yequalsxcubedplusb xsquaredplusc xplusd . xequalsxminusbdiv dedby3 w e g e t a c u b i c e q u a t i o n w i t h o u t a q u a d r a t i c t e r m . yequalsxcubedpluscxplusd , w h e r e c a n d d a r e n e w c o n s t a n t s . Substituting W e d e n o t e it a g a i n b y S h i f t i n g o u r c u r v e v e r t i c a l l y b ynegatived we o b t a i n t h e e q u a t i o n yequalsxcubedplusc xequalsxparenthesi xsquaredpluscparenthesisw h i c h h a s e x a c t l y t h e s a m e s h a p e a s o u r o r i g i n a l c u r v e . N o w w e s t u d y it i n m o r e detail. O u r r o o t s a r enegativesquarerootofnegativeccomma0commasquarerootofnegativec Notice c F i g u r e 4point4.A c u b i c w i t h rootsnegativesquarerootofnegativeccomma0commasquarerootofnegativec N o w b y taking the first derivative w e find the m a x i m a and m i n i m a . y prime equals 3 x squared plus c 0 equals 3 x squared plus c 19 W e f i n d t h a t o u r m a x i m u m i sxequals quarerootofnegativecdividedby3a n d o u r m i n i m u m i s xequalsnegativesquarerootof negative c divided by 3. Rewriting this 0point57squarerootofnegativec.C o m b i n i n g t h i s i n f o r m a t i o n , w e c a n s e e t h a t o u r m a x i m u m and m i n i m u m are closer to our non- zero roots than to our zero root. This means the curve i s s t e e p e r o n t h e i n t e r v a lsquarebracketnegativesquarerootofnegativeccommanegative0point57squarerootofnegativec square bracket t h a n t h e i n t e r v a lsquarebracketnegative0point5 7squarerootofnegativeccomma0squarebracket. Recall that our horse j u m p i n g trajectories showed the slope to be steeper on the landing side (the side to the right of the m a x i m u m ) . Therefore, a cubic function would not a p p r o x i m a t e o u r g r a p h s w e l l b e c a u s e it is s t e e p e r t o t h e l e f t o f t h e m a x i m u m . T o c o n f i r m this, w e tried experimentally fitting our trajectories u s i n g cubic curves a n d the fit p a r a m e t e r s w e r e not g o o d e n o u g h . For example, Excel gives the equation of the b e s t f i t c u r v e a n d t h e Rsquaredv a l u e , w h i c h i s t h e c o r r e l a t i o n c o e f f i c i e n t a n d i t t e l l s u s h o w g o o d o u r f i t i s . W h e n Rsquaredi s c l o s e t o 1 w e h a v e a v e r y g o o d f i t , Rsquaredequals1 w o u l d b e a p e r f e c t f i t . F i g u r e 4point5 a n d 4point6 s h o w s h o w o u r c u r v e s l o o k i n a c u b i c c u r v e a n d t h e Rsquaredv a l u e s a r e n o t close e n o u g h to 1 to b e an accurate fit for our trajectories. F i g u r e 4point5.C o y o t e 2 4 inches as a cubic T h e c o r r e l a t i o n e r r o r is g r e a t e r F i g u r e 4point6.H o l l y w o o d 2 4 inches as a c u b i c Therefore, w e e x a m i n e d quartic curves, did experimental fitting, and noticed that o u r a p p r o x i m a t i o n w o u l d b e m u c h b e t t e r w i t h a q u a r t i c c u r v e w i t h Rsquaredv e r y c l o s e t o 1. u s e d t h e p o i n t s i n t h e h o r s e -j u m p i n g p i c t u r e a n d p l o t t e d t h e m o n a g r a p h i n E x c e l . see A p p e n d i x B to see m o r e pictures and graphs. 20 We Please F i g u r e 4point7.C o y o t e 2 4 inches as a quartic c u r v e N o t i c e that there are t w o inflection points w h e r e the graph changes; first f r o m c o n c a v e u p t o c o n c a v e d o w n , a n d s e c o n d w h e r e it c h a n g e s f r o m c o n c a v e d o w n t o c o n c a v e up. These curves are similar to our trajectories. W e also plotted t h e points o n t h e c u r v e fitting website, [C]. t h e r e d u c e d c h i s q u a r e d s t a t i s t i c w h i c h t e l l s h o w g o o d t h e f i t is. This website calculates T h e e q u a t i o n is: chi squared r equals 1 divided by N minus f sigma above i square bracket y parenthesis x sub i parenthesis minus y sub i square bracketsquareddividedbysigmasquaredsubiw h e r e N i s t h e n u m b e r o f d a t a p o i n t s a n d f is t h e n u m b e r of p a r a m e t e r s i n t h e f i t . I fchisquaredrgreaterthan1 t h e n t h e c u r v e i s a p o o r f i t , i fchisquaredrap roximatelyequalto1 t h e n t h e c u r v e i s a g o o d f i t , a n d i fchisquaredrlessthan1 t h e n t h e f i t i s v e r y g o o d . 21! F i g u r e 4point8.C o y o t e 2 4 inches as a quartic c u r v e F i g u r e 4point8 s h o w s t h e c u r v e o f C o y o t e j u m p i n g a 2 4 - i n c h j u m p . W e find that the c u r v e f i t t i n g w e b s i t e g i v e s u s c l o s e t o t h e s a m e c u r v e a s E x c e l a n d t h a tchisquaredequals0point2 9 s o t h i s c u r v e is a g o o d fit. W e fit t h e c u r v e s f o r e v e r y h o r s e at e a c h size j u m p a n d f o u n d an e q u a t i o n that described each curve. T a b l e 4point9 s h o w s t h e c o e f f i c i e n t s f o r t h e e q u a t i o n s i n t h e f o r m : yequalsa xsuperscript4plusb xcubedpluscxsquaredplusd xpluse . A n a l y z i n g the table, w e w e r e able to m a k e simplifications described in the f o l l o w i n g chapters. close to zero. 22 some N o t e that b is a l w a y s n e g a t i v e a n d c is Horse Jump (in) size a equals sign b equals sign c equals sign d equals sign e equals sign Coyote 9 0point0 0 2 4 negative 0point0 6 8 3 0point6 2 1 2 negative 1point9 4 4 1 6point4 1 0 9 Coyote 18 0point0 0 0 4 negative 0point0 1 0 5 0point0 6 0 9 0point1 3 7 8 4point4 8 3 5 Coyote 24 0point0 0 0 6 negative 0point0 1 7 0point1 2 6 1 negative 0point0 9 7 4point7 1 6 8 Hollywood 9 0point0 0 0 3 negative 0point0 0 5 7 negative 0point0 0 3 9 0point2 7 0 1 4point5 3 8 1 Hollywood 18 0point0 0 0 5 negative 0point0 1 3 2 0point0 9 1 7 0point0 0 3 2 4point4 0 5 8 Hollywood 24 0point0 0 0 2 negative 0point0 0 7 7 0point0 5 1 0point2 2 4 9 4point4 0 3 7 Honey 9 0point0 0 0 2 negative 0point0 0 5 9 0point0 2 1 7 0point1 8 7 9 4point7 2 7 1 Honey 18 0point0 0 0 4 negative 0point0 1 0 6 0point0 6 5 9 0point0 4 5 3 4point9 9 8 2 Poker 9 0point0 0 4 8 negative 0point0 9 1 4 0point4 8 7 6 negative 0point5 4 5 1 3point3 4 2 6 Poker 18 0point0 0 7 1 negative 0point1 7 5 1 1point4 1 5 6 negative 4point2 1 3 7 7point0 7 4 2 F i g u r e 4point9.C o e f f i c i e n t s f o r t h e e q u a t i o n s of o u r curves 23 C h a p t e r 5 C o m p a r i s o n o f T r a j e c t o r i e s In M a p l e , w e rescaled a n d shifted our curves so that the inflection points w e r e at xequals0 a n d xequals1. T o d o t h i s , w e f i r s t f o u n d o u r i n f l e c t i o n p o i n t s a n d s h i f t e d t h e g r a p h s o t h e f i r s t i n f l e c t i o n p o i n t i s a t xequals0 . T h e p o i n t sparenthesis0commafparenthsi0parenthesisparenthesisr e p r e s e n t t h e m o m e n t s t h e horses take points. T h i s m a d e o u r s e c o n d i n f l e c t i o n p o i n t a t xequals1. T h e p o i n t sparenthesis1commafparenthesi 1parenthesisparenthesisr e p r e s e n t w h e n the horses are landing. This change helped us to compare the curves of different horses and of different sized j u m p s . F i g u r e 5point1 s h o w s a l l t h e c u r v e s o f t h e j u m p s t o g e t h e r a f t e r being shifted. F r o m a P h y s i c s p o i n t o f v i e w , it is i n t e r e s t i n g t o n o t i c e t h a t t h e a c c e l e r a t i o n is d e c r e a s i n g f r o mparenthesis0commafparenthesi 0parenthesisparenthesist o o u r l o c a l m a x i m u m . T h e a c c e l e r a t i o n is i n c r e a s i n g f r o m o u r l o c a l m a x i m u m t oparenthesis1commafparenthesi 1parenthesisparenthesis. F i g u r e 5point1.R e s c a l e d curves of all h o r s e s j u m p i n g all h e i g h t s Notice that curve hw 3 and h 1 are not like the other curves. Curve hw 3 was a curve of a horse that j u m p e d further than the rest of the horses, therefore the last data points w e r e 24 w h e n h e w a s still l a n d i n g a n d h a d n ' t r e c o v e r e d h i s n o r m a l s t r i d e y e t . The data points that w e r e outside the c a m e r a f r a m e w o u l d h a v e b e e n higher than our last data point and w o u l d have m a d e the curve increase. than the others. C u r v e h 1 is also d i f f e r e n t b e c a u s e its m i n i m u m is l o w e r This curve w a s for H o n e y j u m p i n g a 9-inch j u m p and she did not j u m p v e r y h i g h o v e r the j u m p , w h i c h m a k e s o u r c u r v e s h a l l o w e r t h a n t h e rest. F i g u r e 5point2 s h o w s t h e c u r v e s m a d e b y C o y o t e j u m p i n g . It is i n t e r e s t i n g t o n o t i c e t h a t t h e l o c a l m a x i m a a r e all at a b o u t t h e s a m e x t e r m w h i c h is w h a t w e w o u l d e x p e c t a s t h i s w o u l d occur over the jump. T h e y values vary because she w a s j u m p i n g different sized jumps. F i g u r e 5point2.R e s c a l e d c u r v e s of C o y o t e j u m p i n g three d i f f e r e n t h e i g h t s F i g u r e 5point3 s h o w s a l l f o u r h o r s e s ' c u r v e s o v e r t h e 1 8 - i n c h j u m p . i n F i g u r e 5point3 i s P o k e r w h o w a s t h e s h o r t e s t h o r s e . All of the curves have about the s a m e s h a p e a n d their m a x i m a are at a b o u t t h e s a m e x value. 25 The lowest curve F i g u r e 5point3.R e s c a l e d c u r v e s of f o u r h o r s e s j u m p i n g an 18 inch j u m p F r o m these observations w e can see that the curves share several properties. In the n e x t c h a p t e r w e w i l l p r o v e t h a t t h e r e is a g e n e r a l " h o r s e " c u r v e t h a t s u m s u p all t h e properties they share. After rescaling and shifting each curve our original equations changed. T a b l e 5point4 s h o w s t h e c o e f f i c i e n t s o f o u r n e w e q u a t i o n s o f t h e f o r m : yequalsa xsuperscript4plusb xcubedpluscxsquaredplusd x plus e. 26 This Horse J u m p size (in) a equals sign b equals sign c equals sign d equals sign e equals sign Coyote 9 2point1 4 7 6 negative 4point2 9 5 2 0 2point0 4 2 2 4point9 5 7 3 Coyote 18 2point0 0 3 1 negative 4point0 0 6 2 0 2point2 7 8 3 5point0 2 1 3 Coyote 24 2point2 0 2 2 negative 4point4 0 4 4 0 2point0 7 3 9 5point2 0 1 3 Hollywood 9 2point9 3 5 4 negative 5point8 7 0 7 0 2point6 9 5 0 4point4 7 7 8 Hollywood 18 1point3 5 0 6 negative 2point7 0 1 2 0 1point8 0 9 4point9 2 3 6 Hollywood 24 8point0 4 5 1 negative 1 6point0 9 0 1 0 4point9 2 9 2 5point1 8 7 5 Honey 9 4point2 1 8 3 negative 8point4 3 6 6 0 2point6 0 5 4 5point0 0 6 3 Honey 18 1point7 2 8 1 negative 3point4 5 6 3 0 1point6 3 0 5point3 8 7 7 Poker 9 2point5 2 2 5 negative 5point0 4 5 0 0 2point3 0 5 7 3point7 2 2 5 Poker 18 2point5 9 9 1 negative 5point1 9 8 2 0 2point2 9 2 0 3point4 6 8 9 5 8 F i g u r e 5point4.C o e f f i c i e n t s f o r t h e e q u a t i o n s of o u r curves after shifting F o r e x a m p l e , w e c a n s e e t h a t cequals0 a n d w e c a n c o n j e c t u r e t h a t bequalsnegative2 a . o n t o p r o v e it i n t h e n e x t c h a p t e r . 27 W e will g o C h a p t e r 6 - A n a l y z i n g S p a c e o f T r a j e c t o r i e s o f H o r s e J u m p s In this chapter w e will study the family of quartic curves describing the trajectories of j u m p i n g horses f r o m an abstract point of view. In order to c o m p a r e theses trajectories w e will try to standardize t h e m and describe their interesting properties b y f o r m u l a t i n g several theorems. T h e o r e m 6point1 : E v e r y t r a j e c t o r y o f a h o r s e ' s j u m p c a n b e c h a r a c t e r i z e d b y t h e q u a r t i c f u n c t i o n given by a n equation o f the f o r m fparenthesisxparenthesisequalsa xsuperscript4minus2 a xcubedplusd xplush w h e r e a, d, a n d h a r e p o s i t i v e a n d h is the h e i g h t o f the h o r s e . P r o o f : In chapter 3 w e showed that polynomials of degree four give a very close approximation of the trajectories. Consider the general equation of a quartic curve given by fparenthesisxparenthesisequalsa xsuperscript4plusb xcubedplusc xsquaredplusd xpluse w h e r e a , b , c , d , a n d e a r e r e a l n u m b e r s a n d agreaterthan0 . T o b e a b l e t o c o m p a r e o u r h o r s e c u r v e s , w e r e s c a l e all o f t h e m s o t h a t t h e t w o i n f l e c t i o n p o i n t s a r e a t xequals0 a n d xequals1 a s i n c h a p t e r 5 . This w a y each horse begins his j u m p w h e n xequals0 h e n c e e r e p r e s e n t s t h e h e i g h t o f t h e m a r k o n e a c h h o r s e , w h i c h c a n b e e a s i l y m e a s u r e d a s i n c h a p t e r 1. T h e r e f o r e w e s u b s t i t u t e eequalsh a n d w e g e t fparenthesisxparenthesisequalsa xsuperscript4plusb xcubedplusc xsquaredplusd xplush . N o w observe that fprimeparenthesi xparenthesisequals4 a xcubedplus3 b xsquaredplus2 cxplusd , and fdoubleprimeparenthesi xparenthesisequals12a xsquaredplus6 b xplus2 c . S i n c e w e h a v e r e s c a l e d , w e c a n s e tfdoubleprimeparenthesi 0parenthesisequals0 so, fdoubleprimeparenthesi 0parenthesisequals1 2 aparenthesi 0parenthesissquaredplus6 bparenthesi 0parenthesisplus2 c 0equals1 2 aparenthesi 0parenthesissquaredplus6 bparenthesi 0parenthesisplus2 c 28 T h e r e f o r e , w e f i n d t h a t cequals0 ( c o m p a r e w i t h t h e t a b l e 5point4 ) . H e n c e , w e c a n w r i t e t h e second derivative as follows: fdoubleprimeparenthesi xparenthesisequals12a xsquaredplus6 b x equals 6 xparenthesi 2 a xplusb parenthesis. N o t e t h a t s i n c e fdoubleprimeparenthesi 1parenthesisequals0 w e c a n c a l c u l a t e fdoubleprimeequals6parenthesi 2 aplusb parenthesis 0equals6parenthesi 2 aplusb parenthesis h e n c e bequalsnegative2 aparenthesisc o m p a r e w i t h o u r p r e d i c t i o n s f r o m t a b l e 5point4parenthesis.A f t e r w e s u b s t i t u t e b a c k into the original function w e get the required f o r m fparenthesisxparenthesisequalsa xsuperscript4minus2 a xcubedplusd xplush L e m m a 6point2 : C o n s i d e r t h e e q u a t i o n f r o m T h e o r e m 6point1 o n t h e i n t e r v a lsquarebracket0comma1squarebracketd e s c r i b i n g t h e horse curve. T h e d e c r e a s i n g p a r t i s s t e e p e r t h a n t h e i n c r e a s i n g p a r t (i.e. t h e h o r s e i s P r o o f : C o n s i d e r the equation describing the curve in question fparenthesisxparenthesisequalsa xsuperscript4minus2 a xcubedplusd xplush w i t h agreaterthan0 a n d t w o i n f l e c t i o n p o i n t s a t xequals0 a n d xequals1. W e have fparenthesi 0parenthesisequalsh and fparenthesi 1parenthesisequalsnegative2 aplusd xplush . S i n c e fparenthsixparenthesisi s p o s i t i v e a t b o t h i n f l e c t i o n p o i n t s a n d hgreaterthan0 w e h a v enegative2 aplusdplushgreaterthan0 so dplushgreaterthan2 a ( c o m p a r e w i t h t a b l e 5point4 a n d s e e i t w o r k s w i t h a l l e x c e p t o u r d i f f e r e n t c u r v e , H o l l y w o o d 24 inch). Now observe fprimeparenthesi xparenthesisequals4 a xcubedminus6 aplusd S i n c e t h e s l o p e a t xequals1 i s n e g a t i v e , w e o b t a i n t h e i n e q u a l i t y fprimeparenthesi xparenthesisequals4 aminus6 aplusd negative 2 aplusdlessthan0 T h e r e f o r e ,negative2 aplusdplushlessthanh w h i c h m e a n s o u r y c o o r d i n a t e a t xequals1 i s l o w e r t h a n o u r y 29 N o w w e c h e c k t o s e e if o u r c u r v e is a s c e n d i n g o r d e s c e n d i n g h a l f w a y b e t w e e n o u r i n f l e c t i o n p o i n t s a t xequalsone-half.fprimeparenthesisone-halfparenthesisequals4 aparenthesi one-halfparenthesi cubedminus6 a parenthesisone-halfparenthesissquaredplusd plus h. fprimeparenthesi one-halfparenthesi equalsnegativeaplusdplush R e c a l l dplushgreaterthan2 a a n d agreaterthan0 t h e n dplushgreaterthana . Therefore negative aplusdplushgreaterthan0 . O u r c u r v e i s s t i l l a s c e n d i n g w h i c h m e a n s o u r l o c a l m a x i m u m i s c l o s e r t o xequals1. S i n c e o u r c u r v e i s l o w e r a t xequals1 a n d t h e l o c a l m a x i m u m i s c l o s e r t o xequals1, t h e r i g h t s i d e o f t h e h o r s e T h e o r e m 6point3 : T h e f a m i l y o f c u r v e s o f d e g r e e l e s s t h a n 5 w i t h fdoubleprimeparenthesi 0parenthesisequals0 a n d fdoubleprime parenthesis 1 parenthesis P r o o f : N o t e that our horse curves belong to equals Hsuperscriopt0comma1.H e n c e i t i s a g e n e r a l i z a t i o n o f t h e T o s h o w Hsuperscipt0com a1i s a v e c t o r s p a c e w e n e e d t o p r o v e t h e f o l l o w i n g : roman numeral 1: f plus g set membership symbol H superscript 0 comma 1 roman numeral 2: f minus g set membership symbol H superscript 0 comma 1 roman numeral 3: alpha times f set membership symbol H superscript 0 comma 1 f o r a n y t w ofunctionsfcommagsetmembershipHsuperscript0comma1anda n y r e a l n u m b e ralpha. L e t fcommagsetmembershipsymbolHsuperscript0comma1t h e n w e h a v e : romannumeral1:f plus gequalsparenthesisfplusg parenthesis fdoubleprimeparenthesi 0parenthesisplusgdoubleprimeparenthsi0 parenthesis equals parenthesis parenthesis fdoubleprimeplusgdoubleprime parenthesis 0parenthesisequals0 fdoubleprimeparenthesi 1parenthesisplusgdoubleprimeparenthesi 1parenthesisequalsparenthesisfdoubleprimeplusg double prime parenthesis parenthesis H e n c e , f plus gsetmembershipsymbolHsuperscript0comma1 S i m i l a r l y ,roman umeral2:fminusgequalsparenthesisfminusg parenthesis 1parenthesisequals0 30 0 fdoubleprimeparenthesi 0parenthesisminusgdoubleprimeparenthesi 0parenthesisequalsparenthesisf double prime minus gdoubleprimeparenthesi parenthesi 0parenthesisequals0 fdoubleprimeparenthesi 1parenthesisminusgdoubleprimeparenthesis1parenthesisequalsparenthesisf double prime minus symbol gdoubleprimeparenthesi parenthesi 1 parenthesis Hsuperscript0comma1.A n d times equals 0. H e n c e , f minus g set membership o b v i o u s l yroman umeral3:parenthesi alphatimesfparenthesisdoubleprimeequalsparenthesisalpha fprimeparenthesisprimeequalsalphatimesfdoubleprime.H e n c e ,alphatimesfsetmembershipsymbolHsuperscript0comma1 w i t halphaarealnumber. C o n s i d e r parenthesis the B a n a c h x parenthesis s p a c e Csquarebracket0comma1squarebracketw i t h vertical bar x t h e n o r mdoubleverticalbarfdoubleverticalbarequalss u pcurlybraceverticalbarf set s u b s p a c e membership o f symbol Csquarebracket0comma1squarebracketb e c a u s e square bracket 0comma1 o u r p o l y n o m i a l square f u n c t i o n s are differences inside xparenthesisminusgparenthesisxparenthesisverticalbarf o r a l l T h i s will T h e o r e m Hsuperscipt0com a1squarebracket0comma1squarebracketw i t h m e t r i c o u r t w o curves. xparenthesi verticalbarf o r a l l bar fparenthesisxparenthesi verticalbarf o r a l l xsetmembershipsymbolsquarebracket0comma1squarebracketi s a s h o w that c o m p l e t e . C o n s i d e r right c o m p l e t e n o r m e d B a n a c h Hsuperscript0comma1i s c l o s e d a c o n v e r g i n g arrow in s e q u e n c e f Csquarebracket0comma1squarebracket,a s b y parenthesis fdoubleprimec a n n o t b e fdoubleprimew i t h set fdoubleprimeparenthesi 0parenthesisequals0 w h e r e f membership equals 0 a linear function. a n d fdoubleprimeparenthesis1parenthesisequals0 symbol w e c a n c o m p a r e H e n c e , the (or the z e r o H case. superscript 3 1 T h e o r e m as less t h a n 5 in Csquarebracket0comma1squarebracketi s c o m p l e t e . W e Hsuperscript0comma1i s a c l o s e d N o t e that T h e r e f o r e , 0 vertical 2point3hyphen1 i nsquarebracketKsquarebracketi t w i l l o f d e g r e e subspace. F o r all fdoubleprimesubna r e p o l y n o m i a l s s e q u e n c e fdoubleprimesubnrightarrowfdoubleprimea l s o function). double space. is c o n t i n u o u s , in o u r the xsetmembershipsymbolsquarebracket0comma1squarebracketa n d n o r m fsubno f p o l y n o m i a l s i m p l i e s that 1 H e n c e s u p fparenthesisxparenthesisminusg parenthesis vertical Hsuperscript0comma1u s i n g xsetmembershipsymbolsquarebracket0comma1squarebracket. g i v e u s the largest distance b e t w e e n 6point4 : bracket c o n v e r g e s to a o f p a r a b o l a f comma 1, w h i c h s h o w s bar f do C o n s i d e r Lsuperscipt2squarebracket0comma1squarebracketw i t h t h e n o r mdoubleverticalbarfdoubleverticalbarequalssquareroot 1 above integral symbol above 0 f squared d x. T h i s n o r m i n d u c e s t h e f o l l o w i n g m e t r i c measuring distance between two curves dparenthesi fcommagparenthesisequalsintegralsymbolsuperscript1sub0 parenthesisfminusgparenthesissquareddxa n d i s a s s o c i a t e d w i t h t h e i n n e r p r o d u c t1aboveintegralsymbolabove0ftimesgdx. In this c a s e t h e d i s t a n c e is r e p r e s e n t e d b y t h e area b e t w e e n t h e t w o curves. N o t e that by s i m i l a r a r g u m e n t a s i n T h e o r e m 6point4 o u r v e c t o r s p a c e Hsuperscript0comma1i s a s u b s p a c e o f t h e H i l b e r t s p a c e Lsquaredsquarebracket0comma1squarebracketw i t h t h e i n d u c e d i n n e r p r o d u c t a n d t h e m e t r i c . Hence w e can compare our jumping trajectories in t e r m s of differences of the areas b e t w e e n the t w o curves. T h e o r e m 6point5 : Hsuperscipt0com a1squarebracket0comma1squarebracketw i t h t h e m e t r i c dparenthesi f comma parenthesis equals 1 above integral symbol above 0 parenthesis fminusgparenthesi squaredd x i s a c o m p l e t e H i l b e r t s p a c e . P r o o f : S i n c e all o u r c u r v e s a r e p o l y n o m i a l s o f d e g r e e l e s s t h a n 5, s i m i l a r l y t o t h e superscript 3 0 comma point 1 is c l o s e d v e c t o r s u b s p a c e of t h e 2hyphen4 i nsquarebracketKsquarebracketi t i s a c o m p l e t e s u b s p a c e , h e n c e squarebracketi s c o m p l e t e a n d a H i l b e r t s p a c e . 32 g C h a p t e r 7point1 - H e a d 7 - F a m i l y o f C u r v e s a n d F u t u r e R e s e a r c h curves The study of the curves given by the m a r k of the center of mass of the horse gave i n t e r e s t i n g r e s u l t s . N o w , it w o u l d b e i n t e r e s t i n g t o s e e if t h e r e a r e a n y o t h e r b o d y p a r t s t h a t will give us interesting curves as well. W e used the same video and edited pictures f r o m Chapter 4 to e x a m i n e w h a t curves w e r e best fits w h e n w e f o c u s e d on other parts of the horse's body. First w e p u t a p o i n t o n t h e h o r s e s ' h e a d s at t h e b a s e s o f their ears. W e then added our axes and grid and f o u n d the coordinates of each point using the s a m e scale as before. Putting these points in Excel, w e h a v e curves for each horse. F i g u r e 7point1.P o k e r ' s h e a d c u r v e o v e r an 18- inch j u m p 33 F i g u r e 7point2.H o l l y w o o d ' s h e a d c u r v e o v e r a 24- inch j u m p The curves of the head differ substantially between horses unlike our previous c u r v e s , w h i c h a r e all p o s i t i v e q u a r t i c s . F i g u r e 7point1 i s a q u a r t i c s i m i l a r t o o u r c e n t e r o f m a s s c u r v e s b u t f i g u r e 7point2 o f a d i f f e r e n t h o r s e i s a c u b i c . H o r s e s h a v e the ability to m o v e their head vertically to shift their weight to balance while j u m p i n g obstacles. Since each horse is built differently t h e direction a n d a m o u n t t h e y n e e d t o m o v e their h e a d is different. This explains w h y our curves w o u l d b e so different. Please see A p p e n d i x D for m o r e graphs. 7point2.T a i l c u r v e s Using the same video of our horses j u m p i n g w e reversed the w a y the pictures were overlaid to see the horses' tails as they j u m p e d . W e p l a c e d p o i n t s at t h e t o p o f t h e h o r s e s ' tails a n d plotted the points in Excel to find the curves m a d e . 34 F i g u r e 7point3.H o l l y w o o d ' s tail c u r v e o v e r an 18- inch j u m p T h e f a m i l y o f tail c u r v e s is m o r e d i v e r s e t h a n o u r c e n t e r o f m a s s c u r v e s b u t n o t as m u c h as the head curves. B y f i t t i n g o u r d a t a , w e c o n c l u d e t h a t all t h e tail c u r v e s h a v e a g o o d f i t i n t o a c u b i c c u r v e w i t h Rsquaredgreaterthan0point8 2 . 7point3.F u t u r e Please see A p p e n d i x D for m o r e graphs. Research O u r research can be taken further by studying the front and hind legs w h e n the horses are jumping. T h e c u r v e s o f t h e h e a d , tail, a n d c e n t e r o f m a s s c a n also b e c o m p a r e d to see any relationships that m a y exist. Another interesting thing would be studying the c u r v e s m a d e w h e n t h e r e is a rider o n t h e h o r s e s a n d w h e t h e r t h e r e is a d i f f e r e n c e m a d e in the curves w h e n the horses jump. S i n c e t h e r e is a b i g d i v e r s i t y o f h e a d p o s i t i o n s , it w o u l d b e i n t e r e s t i n g t o f i n d t h e o p t i m a l position d u r i n g t h e j u m p as w e l l as correlations w i t h o u r initial curves. Research c o u l d b e d o n e to see if t h e r e are a n y correlations b e t w e e n t h e c u r v e s of h o r s e s of t h e s a m e breeds or of the s a m e heights. 35 A p p e n d i x Carmelita A walking: R a w image Edited image: Roxie trotting: R a w image Edited image 36 Patriot trotting: Raw image Edited image Patriot cantering: Raw image Edited image 37 A p p e n d i x Hollywood 24 inches: 38 B H o n e y 18 inches: 39 P o k e r 18 i n c h e s : 40 A p p e n d i x All horses j u m p i n g the 9-inch j u m p : T w o horses j u m p i n g 24- inch j u m p : 41 C H o l l y w o o d j u m p i n g 9-inch, 18- inch, a n d 24- inch j u m p s : H o n e y j u m p i n g 9- inch a n d 18- inch j u m p s : 42 P o k e r j u m p i n g 9- inch a n d 18- inch j u m p s : 43 A p p e n d i x Head curves: 44 D Tail curves: 45 46 B i b l i o g r a p h y [ C ] " C u r v e F i t t i n g 2point0 2 . " P h E T : F r e e o n l i n e p h y s i c s , c h e m i s t r y , b i o l o g y , e a r t h Web. 22 May 2012. < h t t pcol nforwardslashforwardslashp h e tdotc o l o r a d odote d uforwardslashs i m sforwardslashc u r v e hyphen f i t t i n gforwardslashc u r v ehyphenf i t t i n gunderscoree ndoth t m l > . [ D ] D a u s e n d , T o n j a . " T h e H o r s e ' s B a l a n c e . " r i d i n g a r tdotc o m H o m e . W e b . 6 J a n . 2 0 1 3 . < h t t pcol nforwardslashforwardslashw w wdotr i d i n g a r tdotc o mforwardslashb a l a n c edoth t m > . [G] G r z e g o r c z y k , Ivona. M a t h e m a t i c s a n d fine arts. D u b u q u e , Pub. Co., 2000. I o w a : K e n d a l lforwardslashH u n l Print. [K] K r e y s z i g , E r w i n . I n t r o d u c t o r y f u n c t i o n a l a n a l y s i s w i t h a p p l i c a t i o n s . N e w Wiley, 1978. York: Print. [L] L u s k , L e o . " G l i d e R e f l e c t i o n s . " P r o d u c t s o f M a p p i n g s . W e b . 17 Sept. 2012. < m a t h e m a t i c sdotg u l f c o a s tdote d uforwardslashm g f 1 1 0 7 l lforwardslashC h 5 S e c 2 L e s s o n 1doth t m > . [St] " S t r i p P a t t e r n s . " W e b . 1 7 S e p t . 2 0 1 2 . < w w wdoti m adotu m ndote d uforwardslashtildes h a k i b a n forward slash strip [ S ] S u t o r , C h e r y l . " E q u u s i t edotc o m - H o r s e G a i t s : w a l k , t r o t , c a n t e r a n d E q u u s i t edotc o m - T h e U l t i m a t e H o r s e R e s o u r c e . W e b . 2 0 M a y gallop.." 2012. < h t t pcol nforwardslashforwardslashw w wdote q u u s i t edotc o mforwardslasha r t i c l e sforwardslashb a s i c sforwardslash basics G a i t sdots h t m l > . < h t t pcol nforwardslashforwardslashw w wdotw i n p o s s i b l edotc o mforwardslashl e s s o n sforwardslashG e o m e t r y underscore T r a n s l a t i o n ,underscoreR e f l e c t i o n , [ W i] W i l s o n , J e r r y D . , A n t h o n y J . B u f f a , a n d B o . L o u . C o l l e g e p h y s i c s J e r r y D . 47 un Wilson, A n t h o n y J. Buffa, B o Lou. 6th ed. U p p e r S a d d l e River, NJ: P r e n t i c e Hall, 2 0 0 7 . Pearson Print. [W] W o o d f o r d , C h r i s t i n e . " E q u i n e B i o m e c h a n i c s a n d G a i t A n a l y s i s . " Vipsvet. 2 6 S e p t . 2 0 1 2 . < w w wdotv i p s v e tdotn e tforwardslasha r t i c l e sforwardslashb i o m e c h a n i c sdotp d f > . [Z] Z a f r a n , L a r r y . " M a t h w i t h L a r r y - I n t r o d u c t i o n t o R o t a t i o n . " M a t h w i t h L a r r y (Zafran). W e b . 6 May 2012. < h t t pcol nforwardslashforwardslashm a t h w i t h l a r r ydotc o mforwardslashl e s s o n sforwardslashl e s s o n 0 2 8doth t m > . 48 Web.
© Copyright 2026 Paperzz