Solving Systems of Equations Solutions Graph each system. Sketch the graph and identify any solution(s): 1) f(x) = -‐3x + 4 g(x) = 3x – 2 Solution: (1,1) 2) a(x) = 4x -‐ 9 b(x) = x – 3 Solutions: (2,-1) 3) 4x + y = 2 x -‐ y = 3 First put the equations into y=mx+b form: y = -‐4x+2 y = x-‐3 Solution: (1,-2) Solve each system using elimination: 4) 6c -‐ 12d = 24 -‐c -‐ 6d = 4 6c −12d = 24 −c − 6d = 4 6c −12d = 24 → 6c −12d = 24 6( −c − 6d = 4 ) → − 6c − 36d = 24 6c −12d = 24 −6c − 36d = 24 −48d 48 = −48 −48 → → d = −1 − 48d = 48 6c −12(−1) = 24 → 6c +12 = 24 → 6c = 12 c =2 5) -‐4x -‐ 5y -‐ z = 18 € -‐2x -‐ 5y -‐ 2z = 12 -‐2x + 5y + 2z = 4 −4 x − 5y − z = 18 −2x − 5y − 2z = 12 −2x + 5y + 2z = 4 → → − 2x − 5y − 2z = 12 −2x + 5y + 2z = 4 − 4 x = 16 → x = −4 −4 x − 5y − z = 18 −2x + 5y + 2z = 4 → − 6(−4) + z = 22 → 24 + z = 22 −6x + z = 22 z = −2 −4 x − 5y − z = 18 → − 4(−4) − 5y − (−2) = 18 → 16 − 5y + 2 = 18 18 − 5y = 18 → − 5y = 0 → y = 0 € 6) 4s -‐ 4r + 4t = -‐4 4s + r -‐ 2t = 5 -‐3r -‐ 3s -‐ 4t = -‐16 4s − 4r + 4t = −4 4s + r − 2t = 5 −3s − 3r − 4t = −16 4s + r − 2t = 5 → → 4s − 4r + 4t = −4 −3s − 3r − 4t = −16 s − 7r = −20 − 2( 4s + r − 2t = 5) − 8s − 2r + 4t = −10 −3s − 3r − 4t = −16 → − 3s − 3r − 4t = −16 → −3s − 3r − 4t = −16 −11s − 5r = −26 s − 7r = −20 −11s − 5r = −26 → 11( s − 7r = −20) 11s − 77r = −220 −11s − 5r = −26 → −11s − 5r = −26 − 82r = −246 → r = 3 s − 7r = −20 → s − 7(3) = −20 → s − 21 = −20 → s = 1 4s + r − 2t = 5 → 4(1) + (3) − 2t = 5 → 7 − 2t = 5 → − 2t = −2 t =1 € Solve each system using substitution: 7) x + 7y = 0 x + 7y = 0 → x = −7y 2x -‐ 8y = 22 2x − 8y = 22 → 2( −7y ) − 8y = 22 → −14 y − 8y = 22 −14 y − 8y = 22 → − 22y = 22 → y = −1 x = −7(−1) → x = 7 8) -‐x -‐ y -‐ 3z = -‐9 € z = −3x −1 → − x − y − 3z = −9 → − x − y − 3( −3x −1) = −9 − x − y + 9x + 3 = −9 → 8x − y = −12 z = -‐3x -‐ 1 x = 5y -‐ z -‐ 23 z = −3x −1 → x = 5y − z − 23 → x = 5y − ( −3x −1) − 23 x = 5y + 3x +1 − 23 → 2x + 5y = 22 8x − y = −12 → y = 8x +12 2x + 5y = 22 → 2x + 5(8x +12) = 22 → 2x + 40x + 60 = 22 2x + 40x + 60 = 22 → 42x = −38 → x = − 38 42 → x=− 19 21 ⎛ 19 ⎞ 19 19 7 z = −3x −1 → z = −3⎜ − ⎟ −1 → z = −1 → z = − ⎝ 21⎠ 7 7 7 12 z= 7 −x − y − 3z = −9 → − y = x + 3z − 9 → y = −x − 3z + 9 ⎛ 19 ⎞ ⎛12 ⎞ 19 36 9 y = −x − 3z + 9 → y = −⎜ − ⎟ − 3⎜ ⎟ + 9 → y = − + ⎝ 21⎠ ⎝ 7 ⎠ 21 7 1 19 36 9 19 36 ⎛ 3 ⎞ 9 ⎛ 21⎞ 19 108 189 y= − + → y = − ⎜ ⎟ + ⎜ ⎟ → y = − + 21 7 1 21 7 ⎝ 3 ⎠ 1 ⎝ 21⎠ 21 21 21 100 y= 21 € 9) a = -‐5b + 4c + 1 a = −5b + 4c +1 a -‐ 2b + 3c = 1 2a + 3b -‐ c = 2 Infinite number of solutions. a − 2b + 3c = 1 → (−5b + 4c +1) − 2b + 3c = 1 → − 7b + 7c = 0 7c − 7b = 0 → 7c = 7b → c = b 2a + 3b − c = 2 → 2( −5b + 4c +1) + 3b − c = 2 → −10b + 8c + 2 + 3b − c = 2 → − 7b + 7c = 0 → b = c 2a + 3b − c = 2 → 2a + 3b − b = 2 → 2a + 2b = 2 → a + b = 1 a = −5b + 4c +1 → a = −5b + 4b +1 → a = −b +1 → a = 1 − b 10) Create a system of equations with infinite solutions. € 11) Create a system of equations with no solutions.
© Copyright 2026 Paperzz