Solution suggestion: Exercise no. 2 1. Size/dialysis a. The average density of globular proteins is 1.37 g/cm3 [1]. From this we can calculate its reciprocal value, the specific volume v2=0.73 cm3/g. The volume of a globular protein can be estimated by calculating the volume of a sphere with the same size. 12kDa V 14.544nm3 1/ 3 3(14.544nm3 ) 3V r 4 4 d 2r 3.0nm 1/ 3 1.514nm [1] Erickson, H.P. “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy.” Biol Proced Online. 2009 May b. Contour length = 3.0 nm Length of a monomer = 0.5 nm DP = 3.0/0.5 = 6 Mo=6C+7O+8H=192 gmol-1 Mr=(6)(192 gmol-1)-(5)(18 gmol-1)=1062 gmol-1 2. Protein/peptide fundamentals Estimate pI for one of the proteins A-I (choose one) given in Appendix A 1. Calculate charge fraction (α) of each amino acid and terminal ends for 1<pH<14. Henderson-Hasselback: (1) (2) (3) 1 Gives: α =1/(1+10(pKa - pH) ) (4) For basic groups : α =1-1/(1+10(pKa - pH) ) (5) Charge fraction pKa 4 pH Term COOH Term NH3+ Asp (-) 4 Glu (-) 0 6 11 His (+) Cys (-) 1 0 0,01 0,01 1 0 11 Tyr (-) 0 0 0 0 0 0 0 0 -0,01 -0,1 -0,5 10 12 Lys (+) 1 Arg (+) 1 1 1 1 1 1 1 1 1 1 1 1 1 0,99 1 0,9 0,99 0,5 0,9 0,1 0,5 4 10 1 2 3 4 5 6 7 8 0 0,01 -0,1 -0,5 -0,9 0,99 -1 -1 1 1 1 1 1 1 1 0 -0,1 -0,5 -0,9 -0,1 -0,5 -0,9 1 0 0,99 0 0,9 0 0,99 0,99 0,5 0 9 10 11 12 13 14 -1 -1 -1 -1 -1 -1 0,99 0,9 0,5 0,1 0,01 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0,1 0,01 0 0 0 -0,01 0 -0,1 0 -0,5 0 -0,9 0 0 -1 0,99 -0,9 0,99 0,01 0 0,1 0,01 2 -1 0 0 Make a table. Use excel, sigmaplot or other programs. Use eq. 4 and 5. (Check signs) The total charge is the sum of all charge fractions multiplied with number of groups in the protein Examples: Charge fraction PROTEIN A Number of residue pH Term 1 COOH Term 1 NH3+ 10 Asp (-) 0 2 0,01 0,1 1 0 1 -0,1 1 -1 1 -5 10 Glu (-) 0 -0,1 -1 -5 2 His (+) 5 Cys (-) 2 0 2 0 2 0 9 Tyr (-) 0 0 13 Lys (+) 13 6 6 Arg (+) 13 6 Total 1 3 4 5 6 0,99 7 8 9 10 11 12 13 -1 -1 -1 -1 -1 -1 -1 1 -9,9 1 -10 0,99 -10 0,9 -10 0,5 -10 0,1 -10 0,01 -10 0 -10 -9,9 -10 -10 -10 -10 -10 -10 -10 1,98 0 1 9 9 1,8 0 1 0 0,2 0 0,02 0 0 -0,05 0 0 0 0 0 0 0 0 0 -0,09 13 6 13 6 13 6 13 6 13 12,87 6 6 11,7 5,94 0,5 0,9 6,5 5,4 2,5 4,5 1,3 3 4,5 8,1 0,13 0,6 0 4,95 8,91 0 0,06 0 10 10 0 5 9 0 0 -10 -23,6 32,86 34,8 35 -0,5 0,9 22 21,79 19,9 11,48 2,9 0,21 -0,8 -1,12 2,6 3 14 1 Here we can see that pI is between pH 6 and 7, but closer to 6. Charge fraction PROTEIN D Number of residue pH Term 1 COOH Term 1 NH3+ 3 Asp (-) 1 2 4 5 6 7 8 9 10 11 12 13 14 -0,1 -0,5 -0,9 -0,99 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 -0,03 -0,3 -1,5 1 -2,7 1 -2,97 1 -3 0,99 -3 0,9 -3 0,5 -3 0,1 -3 0,01 -3 0 -3 0 -3 0 0 0 0 0 0 0 0 0 0 0,9 0,5 0,1 0,01 0 0 0 0 0 0 0 0 0 0 0 0 -0,01 3 0 Glu (-) 0 0 0 1 His (+) 1 1 1 0 Cys (-) 0 0 0 0 0 0 0 0 0 2 Tyr (-) 0 0 0 0 0 0 0 0 -0,2 -1 -1,8 -1,98 -2 1 Lys (+) 1 1 1 1 1 1 1 0,99 0,02 0,9 0,5 0,1 0,01 0 0 2 Arg (+) 2 2 2 2 2 2 2 2 1,98 1,8 1 0,2 0,02 0 5 4,96 4,6 1,3 0,54 0,1 -0,01 0,24 -1,4 -3,8 -5,58 -5,96 -6 Total 0 0,99 2,99 Here we can see that pI is approximately 8. 2. Plot total charge as a function of pH Example: 30 isoelctric point 20 10 0 -10 0 2 4 6 8 10 12 14 16 Protein A Protein D -20 -30 -40 pH 4 Isoelectric points for all the proteins: Protein pI A 6,1 B 9,9 C 3,7 D 8,0 E 8,0 F 9,3 G 6,9 H 10,35 I 4,42 3. Radius of gyration a) Calculate RG for the following molecules. The monomers all have a mass of 200 g/mol, and each linkage is 0.5 nm. Since m1 = m2 = m3 = and so on, we have: n = 7 (count the monomers) a 2 + b2 = c 2 Pythagoras: Sorce: Wikipedia a. Lengths from center of mass, ri : 2x 2x 2x 0,5 nm 1,0 nm (2*0,5 nm) 1,5 nm (3*0,5 nm) b. 5 Lengths from center of mass, ri : 2x 0,5 nm 2x nm 2x pythagoras nm c. Lengths from center of mass, ri : 2x 4x 0,5 nm nm pythagoras d. Lengths from center of mass, ri : 6x 0,5 nm b) Assume a molecule flips between a) and b) above, so that at any time 50% is in state a) and 50% is in state b) (each state equally probable). Calculate the root-mean-square radius of gyration <RG2>0.5 for the molecule (time average = ensemble average) Wikipedia: In the case of a set of values , the RMS value is given by this formula: For us, this give: 6 4. Shape of biopolymers in solution a) Determine the shape (sphere, rod or random coil) of biopolymers A, B and C given the following data: Biopolymer 1 Biopolymer 2 Biopolymer 3 M (g/mol) RG (nm) RG (nm) RG (nm) 50 000 5.0 18.0 8.0 200 000 7.9 36.0 32.0 800 000 12.6 72.0 128.0 1. Log transformation M Log M Biopolymer 1 Biopolymer 2 Biopolymer 3 RG RG RG Log RG Log RG Log RG 50000 4,69897 5 0,69897 18 1,255273 8 0,90309 200000 5,30103 7,9 0,897627 36 1,556303 32 1,50515 800000 5,90309 12,6 1,100371 72 1,857332 128 2,10721 2. Plot log RG against log M log RG = b log M + const. 2,5 y = x - 3,7959 2 1 1,5 y = 0,5x - 1,0942 2 3 1 Linear (1) y = 0,3334x - 0,8681 0,5 Linear (2) Linear (3) 0 4 4,5 5 5,5 6 log M 3. When you don’t have excel (like on the exam) to find the slope, use two sets of the values from your log transformation to calculate it. Example for polymer 1: Or you can check if the constant, in log RG = b log M + const., is the same when you try with the different RG’s and M’s. 7 4. You need to know the relation between the slope and shape of biopolymers: Shape Sphere Rod Random coil Slope 1/3 1 1/2 b) Estimate C∞ for the random coil biopolymer. Assume M0 = 162 (as for glucose) and l (monomer length) = 0.5 nm Equations for this problem: M n 50000 RG <r^2> <r^2>/l^2 <r^2>/nl^2 308,642 18 1944 7776 25,19424 200000 1234,568 36 7776 31104 25,19424 800000 4938,272 72 31104 124416 25,19424 C infinite 140000 120000 100000 80000 60000 C infinite 40000 20000 0 0 1000 2000 3000 4000 5000 6000 n 8 C infinite 30 25 20 15 C infinite 10 5 0 0 200000 400000 600000 800000 1000000 M 5. Titration/Polyelectrolytes a. You need to use equation (4) from problem 1. α =1/(1+10(pKa - pH) ) = 1/(1+10(4.3-4.7)) = 0.715 b. Assume the following reaction is in equilibrium When NaCl is added, there is a new equilibrium since R-COO- groups associate with Na+. The result is a lowering of the pKa of the carboxyl groups and thereby the pH is lowered. 9
© Copyright 2026 Paperzz