1. The table shows information about the numbers of fatal road accidents in Great Britain. Fatal road accidents in Great Britain Year Quarter Number of fatal road accidents (x) 2004 2005 1 2 3 4 1 2 3 4 703 825 801 892 740 727 818 916 (Source: Department of Transport) (a) Calculate the mean number of fatal road accidents per quarter. ................................... (1) For the numbers of fatal road accidents in the table (b) x2 = 5 196 408 Calculate the standard deviation of the numbers of fatal road accidents. Give your answer to 1 decimal place. ..................................... (2) In the first quarter of 2006 the number of fatal road accidents was 720 A motoring organisation is going to calculate the mean number of fatal road accidents per quarter for 2004, 2005 and the first quarter of 2006. (c) Without carrying out any more calculations compare this mean with the mean found in part (a). Give a reason for your answer. ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 5 marks) Statistics Revision pack 3 1 2. The parking times in hours (p) for 118 cars in a car park are summarised in the table. (a) Hours (p) Frequency (f) 0<p1 16 1<p2 24 2<p4 30 4<p6 24 6 < p 12 24 p > 12 0 Draw a histogram for the data. Parking times of cars in a car park 0 5 10 Parking time (hours) 15 (3) Statistics Revision pack 3 2 (b) p Frequency (f) 0<p1 16 1<p2 24 2<p4 30 4<p6 24 6 < p 12 24 Totals 118 Work out an estimate for the mean parking time of the cars. You may use the space in the table. ........................ hours (3) (c) Work out an estimate of the standard deviation of these parking times. Give your answer to 1 decimal place. You may use fx2 = 2872. ........................ hours (3) (Total 9 marks) Statistics Revision pack 3 3 3. In an experiment a psychologist records the times, x seconds, for 50 people to complete a puzzle. The results are summarised in the table. x Number of people (f) 0 < x ≤ 40 10 40 < x ≤ 60 9 60 < x ≤ 80 12 80 < x ≤ 100 9 100 < x ≤ 180 10 Total You may use the space provided in the table to answer this question. (a) (i) Work out an estimate for the mean time. .......................................... (ii) Show that the standard deviation for the times is approximately 40 seconds. (5) Statistics Revision pack 3 4 (b) Draw a histogram to represent the data in the table. (3) (c) (i) Shade the region in your histogram that is within two standard deviations of the mean. (ii) Find the proportion of people represented by this region. .......................................... (4) It is claimed that the time to complete the puzzle is normally distributed. (d) Comment on the validity of this claim. ...................................................................................................................................... ...................................................................................................................................... ...................................................................................................................................... (2) (Total 14 marks) Statistics Revision pack 3 5 4. In an experiment a biologist records the length, x cm, of 125 worms. The results are summarised in the table. x Number of worms (f) 0<x4 36 4<x6 26 6<x8 20 8 < x 10 12 10 < x 15 21 15 < x 20 10 Total 125 You may use the space provided in the table to answer this question. (a) (i) Show that an estimate for the mean length of the worms is 7.1 cm. (ii) Work out an estimate for the standard deviation of the lengths of the worms. (You may use fx2 = 9089.75) ................................................. (6) Statistics Revision pack 3 6 (b) Draw a histogram to represent the data in the table. (3) (c) (i) Shade the region in your histogram that represents worms whose length is less than or equal to the mean length of the worms. (ii) Find the number of worms whose lengths are less than or equal to 7.1 cm. ................................................ (3) (d) Are the lengths of these worms normally distributed? Explain your answer. ........................................................................................................................ (1) (Total 13 marks) Statistics Revision pack 3 7 5. Stephanie recorded the time she took to travel to work on each of 50 days. The table shows information about these times. (a) Time (x minutes) Frequency (f) 20 < x ≤ 30 4 30 < x ≤ 38 9 38 < x ≤ 42 12 42 < x ≤ 50 18 50 < x ≤ 60 7 Calculate an estimate of the mean time Stephanie took to travel to work. ....................................... minutes (3) (b) Calculate an estimate of the standard deviation of these times. You may use Σfx2 = 91367 ....................................... minutes (2) (Total 5 marks) Statistics Revision pack 3 8 6. The table gives information about the age, and the minimum stopping distance at 40 kilometres per hour, for each of 10 cars. Car Age of car (months) Stopping distance (metres) A 9 28.4 B 15 29.3 C 24 37.6 D 30 36.2 E 38 36.5 F 46 35.4 G 53 36.3 H 60 44.1 I 64 44.8 J 76 47.2 (Source: www.bized.co.uk) (a) Work out Spearman’s rank correlation coefficient for these data. You may use the blank columns in the table to help with your calculations. ............................................................ (4) (b) Describe and interpret your answer to part (a). ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 6 marks) Statistics Revision pack 3 9 7. At one location on a river, the distance from the bank and the corresponding depth of water were measured. The table shows the results. Distance from bank (cm) 0 50 150 200 250 300 350 400 450 500 Depth (cm) 0 10 26 44 59 52 74 104 85 96 Rank of Distance 1 2 3 4 5 6 7 8 9 10 Rank of Depth d d2 (Source: Research Project) (a) Complete the table. (2) (b) Calculate Spearman’s rank correlation coefficient for these data. ..................................... (2) (c) Interpret your answer to (b). ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 6 marks) Statistics Revision pack 3 10 8. The Gross Domestic Product per person, or GDP per capita, is a measure of a country’s wealth. The greater the GDP per capita, the greater the country’s wealth. The table shows the GDP per capita and the life expectancy at birth for each of nine countries. Country GDP per capita ($) Life expectancy at birth (years) Luxembourg 58 198 78.7 UK 29 483 78.4 Monaco 26 844 79.6 Uruguay 14 423 76.1 Seychelles 7711 71.8 Grenada 4916 64.5 St. Helena 2413 77.8 Haiti 1484 52.9 Comoros 657 62.0 (Data source: www.nationmaster.com) (a) Work out Spearman’s rank correlation coefficient for these data. ................................. (3) (b) Interpret your answer to part (a). ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 5 marks) Statistics Revision pack 3 11 9. The scatter diagram shows the ages, x million years, and the volumes, y cm3, of eight skulls of a particular type of ape. 250 200 Volume of skull ( y cm3) 150 100 50 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Age of skull (x million years) (a) Describe the correlation between the volume of a skull and the age of a skull for this type of ape. ..................................................................................................................................... (1) The table gives the ages, x million years, and the volumes, y cm3, of the eight skulls shown in the scatter diagram. (b) x 2.5 1.8 0.8 2.4 1.6 0.5 0.4 1.2 y 34 80 170 20 80 180 210 130 Calculate the coordinates of the mean point ( x , y ) for these data. (..................... , .....................) (2) (c) On the scatter diagram (i) plot the point ( x , y ) , (ii) draw the line of best fit. (2) Statistics Revision pack 3 12 A skull of this particular type of ape has an age of one million years. (d) Find an estimate for the volume of this skull. .................................... cm3 (1) The skull of another ape is to be classified. It has an age of 1 million years and a volume of 75 cm3. (e) Discuss whether this skull is likely to be from the same type of ape. ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (f) Give a reason why your line of best fit may not be used reliably to predict the volume of a skull with an age of 3 million years. ..................................................................................................................................... ..................................................................................................................................... (1) The equation of the line of best fit has the form y ax b (g) Use your line of best fit to find the value of a and the value of b. a = .............................. b = .............................. (3) (h) Give a practical interpretation of the meaning of a. ..................................................................................................................................... ..................................................................................................................................... (2) (Total 14 marks) Statistics Revision pack 3 13 10. The table gives the mean and standard deviation of the marks in three examinations. The marks in each of these examinations are normally distributed. Examination Mean Standard deviation French 60 15 German 56 10 Science 50 12.5 Mary got a mark of 72 in the French examination and a mark of 66 in the German examination. (a) Calculate Mary’s standardised score for these two examinations. Standardised French score ................................... Standardised German score ................................. (3) (b) Did Mary do better in the French examination or in the German examination? Give a reason for your answer. ...................................................................................................................................... ...................................................................................................................................... (1) In the Science examination Mary had a standardised score of –0.56 (c) Calculate Mary’s mark in the Science examination. ......................................... (2) (Total 6 marks) Statistics Revision pack 3 14 11. In order to be considered for a place on a mechanics course at a local college, Wing and Mia took tests in English and Mathematics. Each test had a maximum mark of 100. The table shows some information about the tests. Wing Mia Overall Mean Standard deviation English mark 48 55 50 10 Mathematics mark 59 51 55 8 (a) Calculate Wing’s standardised scores in (i) English, ..................... (ii) Mathematics. ..................... (3) Mia’s standardised score in English is 0.5 and in Mathematics it is –0.5. (b) What is meant by a negative standardised score? ........................................................................................................................ ........................................................................................................................ (1) (c) Who do you think did best overall? Give a reason for your answer. ........................................................................................................................ ........................................................................................................................ (1) (Total 5 marks) Statistics Revision pack 3 15 12. Talil took a History exam. The marks in this exam are normally distributed with a mean mark of 65 and a standard deviation of 10 Talil had a mark of 52 in the History exam. (a) Calculate Talil’s standardised score for the History exam. ....................................... (3) Talil also took a Science exam. His standardised score for the Science exam was – 0.25 (b) Did Talil do better in the History exam or in the Science exam? Give a reason for your answer. ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 5 marks) Statistics Revision pack 3 16
© Copyright 2026 Paperzz