pKa - Brønsted acids and bases Solvent and structure effects Determination of pKa values 2 Index pKa and pKaH Determination of pKa values Effects on acidity and basicity – Solvent effects – Intrinsic stabilization of ions – Other structure variables Public pKa tables and further reading April 3, 2012 Antti Neuvonen 3 pKa and pKaH 𝑝𝐾𝑎 = −𝑙𝑜𝑔10 𝐾𝑎 – Where 𝐾𝑎 = 1 𝑎 𝐴− 𝑎 𝑆𝐻 + 𝑎 𝐻𝐴 𝑎 = activity, 𝑆 = solvent – pKas in different solvents are not directly comparable2 𝑝𝐾𝑎𝐻 = −𝑙𝑜𝑔10 𝐾𝑎𝐻 – pKa of conjugate acid – Measure of basicity 1) Anslyn, E. V., Dougherty, D. A. (2006) Modern Physical Organic Chemistry, University Science Books. 2) Cookson, R. F. Chem. Rev. 1974, 74, 5. April 3, 2012 Antti Neuvonen 4 Determination of pKa values In solution phase1 – Potentiometric and spectrophotometric methods – Calorimetry (Heat of protonation/deprotonation) – Cyclic voltametry (indirect) Major constraint is the leveling effect – In H2O reliably between pH 1 to 131 – In DMSO up to pKa of 32 (pKa = 35,1 in DMSO)2 – Extrapolation with acidity functions (e.g. H0 and H_)1 1) Cookson, R. F. Chem. Rev. 1974, 74, 5. 2) Olmstead, W. N; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295. April 3, 2012 Antti Neuvonen 5 Determination of pKa values Potentiometric methods1 – Electromotive force (emf) is proportional to Ka • Accurate in aqueous solutions • In non-aqueous solvents, such as THF, ion pairing and aggregation may affect the measurements2 • Right choice of electrode – pKaHs of weak acids in DMSO3 • Glass electrode (Ag/AgClO4/DMSO) • Titration with Cs(CH3SOCH2)/DMSO 1) Cookson, R. F. Chem. Rev. 1974, 74, 5. 2) Garrido, G.; Koort, E.; Ràfols, C.; Bosch, E.; Rodima, T.; Leito, I; Rosés, M. J. Org. Chem. 2006, 71, 9062. 3) Ritchie, C. D.; Uschold, R. E. J. Am. Chem. Soc. 1967, 89, 1721 April 3, 2012 Antti Neuvonen 6 Determination of pKa values – Equilibriation methods Relative to a reference compound (e.g. pyridine)1 UV/Vis spectrophotometry, NMR ΔpKaH determined from equilibrium constant K – Titration with a strong acid – ∆𝑝𝐾𝑎𝐻 = 𝑝𝐾𝑎𝐻 𝑎 HB2 + − 𝑝𝐾𝑎𝐻 HB1 + = 𝑙𝑜𝑔 𝑎 HB2 + 𝑎 B1 HB1 + 𝑎 B2 MSAD (McEwen-Streitwieser-Applequist-Dessy)2 – Introduced by D. J. Cram in 1965 – Relative acidities against 9-phenylfluorene from equilibrium concentrations in cyclohexylamine/cyclohexylamide – UV-Vis 1) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019. 2) Cookson, R. F. Chem. Rev. 1974, 74, 5. April 3, 2012 Antti Neuvonen 7 Determination of pKa values – Equilibriation methods Continuous basicity scale from interlocking measurements – Relative to a standard basicity Picture taken from : Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019. April 3, 2012 Antti Neuvonen 8 Determination of pKa values Voltammetric reduction potentials – Preliminary work by Breslow1,2 – pKa is indirectly observed 1) Breslow, R.; Chu, W. J. Am. Chem. Soc. 1970, 92, 2165. 2) Breslow, R.; Chu, W. J. Am. Chem. Soc. 1973, 95, 411. April 3, 2012 Antti Neuvonen 9 Solvent effects Gas phase acidities – Only intrinsic effects – Enthalpy of dissociation1 Solvation – Lack of intrinsic stabilization decreases neutral acid strength in aprotic solvents – Cationic acids exhibit similar acidities in water and in coordinating organic solvents (DMSO, DMF, THF, not MeCN) • For substituted pyridine conjugate acids2: – 𝑝𝐾𝑎 MeCN = 6.04 + 1.269 ∗ 𝑝𝐾𝑎 H2 O – 𝑝𝐾𝑎 MeCN = 7.44 + 0.934 ∗ 𝑝𝐾α THF 1) Himmel, D.; Goll, S. K.; Leito, I.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 6885. 2) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019. April 3, 2012 Antti Neuvonen 10 Solvation and ion pairing Ion pairing and aggregation have a significant influence on pKa1 – pKα - ion-pairing corrected pKa of ion-pair acidities – Complexing agents, such as crown ethers, can be used to break aggregates and ion pairs Acidity of acetylacetone increases with increased ion pairing of the conjugate base2 – Li+>Na+>K+ 1) Olmstead, W. N; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295. 2) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. April 3, 2012 Antti Neuvonen 11 Aggregation Protophobic solvents solvate cationic acids poorly1 – Aggregation (homoconjugation) – Ion pairing – Several equilibria 1) Kolthoff, I. M. Anal. Chem. 1974, 46, 1992. 2) Coetzee, J. F. ; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005. April 3, 2012 Antti Neuvonen 12 Structure variables Delocalization, inductive effects and polarizability – Phosphazenes, Benzoic acids (Hammett), TFA, and HI Internal solvation (field effects) – Diols (e.g. Taddol type, acid), Enzyme active sites, Diamines (base) Bond angles – Strained cyclic and bridged systems Hybridization and aromaticity April 3, 2012 Antti Neuvonen 13 Delocalization and inductive effect Inreased delocalization raises pKaH of phosphazenes1 Inductive effect stabilizes localized charges Polarizability stabilizes charges pKa (DMSO) CH3CH2OH2 29.8 CF3CH2OH3 23.5 (CH3)2CHOH2 30.3 (CF3)2CHOH3 17.9 (CH3)3COH2 32.2 (CF3)3COH3 10.7 1) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019. 2) Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295. 3) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. April 3, 2012 Antti Neuvonen 14 Intramolecular H-bonding (field effects) Intramolecular H-bonding increases diol acidity – TADDOL derivative TEFDDOL1 Intramolecular H-bonding increases diamine basicity2 Relief of lone pair repulsion increases basicity further3 1) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudörfl, J.-M.; Berkessel, A.; O’Donoghue, A. M. C. Chem. Eur. J. 2011, 17, 8524. 2) Alder, R. W.; Eastment, P.; Hext, N. M.; Moss, R. E.; Orpen, A. G.; White, J. M. J. Chem. Soc. Chem. Commun. 1988, 1528. 3) Alder, R. W. Chem. Rev. 1989, 89, 1215. April 3, 2012 Antti Neuvonen 15 Bond angles and hybridization1 Deviation from tetrahedral geometry decreases amine basicity Nitrogen basicity decreases as s-character increases 1) Alder, R. W. Chem. Rev. 1989, 89, 1215. April 3, 2012 Antti Neuvonen 16 Aromatic stabilization vs. antiaromatic destabilization Cyclopentadiene1 1,2,3-triphenyl cyclopropene2 – Antiaromatic destabilization proposed to have major effect Cyclopropenimine3 – Exceptionally high pKaH value – comparable to phosphazenes 1) 2) 3) 4) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. Breslow, R; Chu, W. J. Am. Chem. Soc. 1973, 95, 411. Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552. Coetzee, J. F.; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005. April 3, 2012 Antti Neuvonen 17 Public pKa tables and reading Reich (Bordwell) – Extensive collection of pKa values in DMSO – http://www.chem.wisc.edu/areas/reich/pkatable/index.htm Ripin & Evans (Bordwell) – Common acids and bases (H2O and DMSO) – http://evans.harvard.edu/pdf/evans_pka_table.pdf Ivo Leito, University of Tartu – Vast amounts of experimental data in organic solvents and gas phase – http://tera.chem.ut.ee/~ivo/HA_UT/ April 3, 2012 Antti Neuvonen 18 Public pKa tables and reading ZirChrom – Aqueous pKa values for natural products, amino acids and APIs – http://www.zirchrom.com/organic.htm NIST – Gas phase acidity search engine – http://webbook.nist.gov/chemistry/acid-ser.html “Acid-Base Behavior in Aprotic Organic Solvents” – Davis, M. M. (1968) National Bureau of Standards, Washington, University of North Texas Digital library – http://digital.library.unt.edu/ark:/67531/metadc13152/m1/1/ April 3, 2012 Antti Neuvonen 19 Conclusions Vast amounts of pKa data available – Right interpretation essential “Unified pH in all phases”1 – Relative to energy of H+ in gas phase, μabs(H+) = 0 Picture taken from: 1) Himmel, D.; Goll, S. K.; Leito, I.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 6885. April 3, 2012 Antti Neuvonen
© Copyright 2026 Paperzz