® (7n + 1)

What Happened When the
Boarding House Blew Up?
Factor each trinomial below. Find one of the factors in each column of binomials. Notice the
letter next to one factor and the number next to the other. Write the letter in the box at the
bottom of the page that contains the matching number.
0 (5u + 3)
3x2+7x+2
(x - 1)
0 (3x + 1)
2x2+5x+3
3x2 - 16x + 5
® 6u2 + 5u + 1
0 8u2 - 9u+ 1
0 10u2 + 17u+ 3
® 9u2 - 9u + 2
0 (5u + 6)
•
0 (3t - 1)
0 (n - 1)
• (3t + 1)
0 (n - 2)
• (t + 1)
0 (3n - 1)
CI (2n - 1)
• (3t - 7)
• (4t - 7)
3n2 + 2n - 1
5n2 - 4n - 1
2n2 + 5n - 3
7n2 - 13n - 2
0 3t2 + 14t - 5
4t2-11t+7
() 6t2 + 5t - 1
0 3t2 - 20t - 7
2 3 4
(2u+ 1)
0 (3x - 1)
0 (u - 1)
5u2+11u+6
1
®
0 (3u - 1)
® (2u + 3)
• (x + 1)
0 7x2 - 9x + 2
0
OY
(3u - 2)
(x - 5)
(8u - 1)
(7x - 2)
(5u + 1)
(x + 2)
(7x + 2)
(2x + 3)
(u + 1)
(3u + 1)
ON
(n + 3)
®
•
(t - 1)
(2t + 1)
OO (n + 1)
OF (t+ 5)
(5n + 1)
(t-7)
® (7n + 1)
(6t - 1)
5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 1
OBJECTIVE 3—o: To factor trinomials of the form axe + bx + c,
where a is a positive integer greater than 1.
ALGEBRA WITH PIZZAZZ!
© Creative Publications
91
OD
%/t--1-A:r 17117 IA Z.LAN)Gr
%/kf' N) 1•4P-), Z1A\)Gf
Gfc2IN)Gr 1•4e9U-Nrroesc-IN) GI Ik/VIN)Gr IN
Q r Factor each trinomial below. Find both factors in the rectangle below and
cross out each box containing a factor. You will cross out two boxes for each
exercise. When you finish, print the letters from the remaining boxes in the
13
co_
squares at the bottom of the page.
CD m
CD >
sa)
N
1
• O 6x2+
N
19x + 3®
5x2 — 9x — 2
0co
®
- ®
co
0
-0
15m2 + 19m + 6
9x2 + 15x + 4
0
8m2 — 5m — 3
0 4m 2 _17m+ 18
7x 2 + x — 8
0 14m2 + 17m — 22
0 2x2 — 21x + 40
3m2 — m — 30
TH
AT
PA
DO
NE
(4m — 9)
(3x + 1)
( m — 2)
(m — 3)
(2x — 5)
UP
UW
IN
PL
AN
DA
RE
(6x + 1)
(15m + 1)
(m + 2)
(x + 4)
(5m + 3)
(x — 2)
CO
LD
IB
ER
AJ
ET
(7x + 8)
(3x + 4)
(7x + 2)
(8m + 3
(m + 3)
(7m + 2)
(x +
3)
XT
CK
(3m — 10) (14m — 11)
ON
(x — 8)
YO
UR
(2m — 3)
(5x + 1)
MA ,
TT
(3m + 2)
(9x + 2)
HI
GH
m—1
1)
How Can Fishermen Save Gas ?
Factor each polynomial below. Find one of the factors in each column of binomials. Notice
the letter next to one factor and the number next to the other. Write the letter in the box at the
bottom of the page that contains the matching number.
0
OO
® (2n + 7)
0 (n + 5)
•
(n — 1)
•
(n — 4)
@ (2n — 7)
® (n — 5)
(3n — 5)
(n + 8)
OK (3n — 1)
OA (n + 6)
(n + 1)
0 (n + 2)
•
(n + 8)
4n2 — 49
2
17 ± 8n + 12
n 2 — 9n + 20
2
fl + 16n + 64
n2 + 2n— 15
3n2 — 8n + 5
*&+:.!+&+&+&*&+/Zk)&+&+k)W&WW1 4&&&+&kl+/14+&,&+&+
0
0
0
0
0
+&&
.+&+k)WWW &&+ 4+&+&+&
,
® (2a + 1)
® (a— 6)
(a — 3)
© (a + 3)
O (5a — 1)
® (2a — 1)
ON (1 + 3a2)
•
(a — 5)
@ (a + 7)
a2 + 4a — 21
5a 2 + 9a — 2
0
0 (5a + 1)
O (a + 2)
@ (a — 1)
(1 — 3a2)
(2a + 5)
2a2 + 11a + 15
1 — 9a4
0
a2 — 11a + 30
10a 2 — 3a — 1
(n — 3)
&&+&+&+&WW+ 4.+(Z/WW&Ikfk+&+&.+&+&+&+&+k &+k+WZ,W+(-4+(44WWWW&WW&.+&+&Wv-Z/fkif&
13 1 8u2 + 19u + 6
0
@
25u2 — 20u + 4
3u2 — 11u — 14
0
®
®
u2 — 4u — 21
6u2 + 17u — 10
2u2 + 5u — 18
1
2
3
4
©
5
6
7
OBJECTIVE 3—p: To factor polynomials using
the methods on preceding pages (review).
8
(u+ 3)
(2u + 9)
(u — 3)
(5u — 2)
(3u — 14)
(u+ 2)
(3u + 10)
OM
(u + 1)
® (2u + 1)
© (8u + 3)
® (2u — 1)
(u —7)
2)
(5u — 2)
® (u —
9 1 0 11 12 13 14 15 16 17 18
ALGEBRA WITH PIZZAZZ!
© Creative Publications
93
What Do You Call a Sore on a
Police Officer's Foot ?
Factor completely each polynomial below. Find your answer and notice the letter
next to it. Write this letter-in the box containing the number of that exercise.
0
3x2 — 15x + 18
x3 + 11x2 + 10x
8x3 — 18x
5x3 — 40x2 + 60x
4x2 + 8x — 60
2x3 — 20x2 — 48x
4m2 — 18m + 14
15m3 + 24m2 + 9m
15m2 — 10m — 25
50m3 — 2m
3m2 — 10m + 8
60m3 + 54m2 — 6m
((
(
(
Answers:
Answers:
0 5x(x + 3)(x — 4)
ON 2x(2x + 3)(2x — 3)
0 2x(x + 6)(x — 4)
© 3(x — 2)(x — 3)
© 4(x + 5)(x — 3)
OA x(x + 5)(x + 3)
® 4(x + 5)(x — 1)
0 x(x + 10)(x + 1)
• 2x(x — 12)(x + 2)
•
5x(x — 2)(x — 6)
® 2x(4x + 9)(x + 1)
5
94
8
11
7
ALGEBRA WITH PIZZAZZ!
© Creative Publications
O
O
O
O
O
O
O
O
O
O
(
(
3m(5m + 3)(m + 1)
5(3m + 1)(m — 5)
(3m — 4)(m — 2)
2(2m + 1)(m + 7)
5(3m — 5)(m + 1)
6m(5m — 1)(2m — 1)
3m(5m + 2)(m — 1)
2(2m — 7)(m — 1)
2m(5m + 1)(5m — 1)
6m(10m — 1)(m + 1)
(3m — 2)(m + 4)
0
1
3
9
6
2
12
4
10
OBJECTIVE 3—q: To factor polynomials completely
(excludes factoring by grouping).
0
Old Lawyers Never Die, They Just
w
m
0
H
m
14 12 5
4
1
10 4
7
9
2 13 13 4
2 14
Old Skiers Never Die, They Just
H
0
0
0
8 12 3 12 6
-0
0
11 10 7
14 14
YOU MAY HAVE HEARD THAT OLD MATH TEACHERS NEVER DIE, THEY JUST REDUCE TO LOWEST TERMS.
TO FIND OUT WHAT HAPPENS TO OLD LAWYERS AND SKIERS, FOLLOW THESE DIRECTIONS:
Factor completely each polynomial below. Find your answer in the appropriate answer column and notice the letter
next to it. Each time the exercise number appears in the code, write this letter above it.
0
C.
0(-)
03
Answers for 1-7:
cT
CD
2x2 + 22x + 36
Answers for 8-14:
(3x + 5)(x — 2)
5x3 — 10x2 — 40x
u2(5u — 1)(3u + 1)
5x(2x — 7)(x + 1)
18x3 — 98x
3u(4u + 3)(u + 3)
iv0
2(x + 2)(x + 9)
axe — 7ax + 12a
0
a(x + 6)(x + 2)
x4 + 8x3 — 20x2
o
x2 (x + 10)(x — 2)
3x2 + 13x + 10
2x(3x + 7)(3x — 7)
10x3 — 25x2 — 35x
(u + 1)(u — 1)(u + 3)(u — 3)
2v(u — 7)(u — 2)
4(3u + 6)(u — 1)
(u2 + 9)(u + 1)(u — 2)
• r-
x2 (x + 4)(x — 5)
12u2 — 28u — 24
`4(3u + 2)(u — 3)
@Co
2(x + 3)(x + 6)
u4 — 3u2 — 4
u2 (15u + 1)(u — 1)
5x(x — 4)(x + 2)
15u4 + 2u 3 — u2
5(8u + 11)(u — 1)
2x(9x — 7)(x + 7)
2u2v — 1 8uv + 28v
(3x + 10)(x + 1)
12u 3 + 36u2 + 27u
2v(u + 14)(u + 1)
(u2 + 1)(u + 2)(u — 2)
5x(2x — 1)(x + 7)
40u2 + 15u — 55
5(4u + 11)(2u + 1)
a(x — 3)(x — 4)
u4 — 10u2 + 9
3u(2u + 3)2
CD
X
0
co
co
0
-0.
>
0
m
2>
N
ON
(7, N
CD
O
Did You Hear About...
A
B
C
D
E
F
G
H
I
J
K
L
M
N
???
Answers for H-N:
Answers for A-G:
(6 - h)(x3 - 4)
(2b - 3)(r + 4)
MISS
HUNTED
(5t2 - 1 )(t + 7)
(5c - d)(2c - d)
Factor each expression below.
Find your answer in the appropriate
WHEN
MADE
answer column and notice the word
(6h - 1)(x3 - 4)
(x + 3)(x - 2)
beneath it. Write this word in the
box containing the letter of that
ON
THE
exercise. Keep working and you'll
hear what's "bruin."
(a - 2b)(5a + 3b)
(a + 2)(5a - 2)
OA x(x - 2) + 3(x - 2)
BEAR
HE
(x2 + 1)(k + 4)
(2d + 1)(5 - n2)
® a(2a + 5) + 2(2a + 5)
BEAR
RANGER
n(3n - 1) - 5(3n - 1)
(k2 - 7)(x + 3)
(a - 2b)(3a - 5b)
® 2b(r + 4) - 3(r + 4)
THE
PUT
® (x2 + 1)k + (x2 + 1)4
(a + 2)(2a + 5)
(w2 + 1)(3w - 1)
OF (5c - d)(2c) + (5c - d)(4d)
MAN
FOREST
® k2(x + 3) - 7(x + 3)
(k - 2)(x + 3)
(2d - 5)(5 — n2)
0 w2(3w - 1) + (3w - 1)
DEER
SHOOT
0 2d(5 - n2) + (5 - n2)
(n - 5)(3n - 1)
(3u2 - v2)( u 2 + v2)
® 5t2(t + 7) - (t + 7)
WHO
HIM
3u2(u2 + v2) - v2( u 2 + v2)
(y2 + 3)2
(2b + 4)(r - 3)
® (a - 2b)3a - (a - 2b)5b
SHOT
CLOTHES
0
6h(x3
4)
(x3
4)
(5c - d)(2c + 4d)
( u 2 + 3v 2 )(u 2 + v2)
+
3)
3)y2
3(y2
+
O
N
UNTIL
A
OBJECTIVE 3—r: To factor a polynomial whose
WITH PIZZAZZ! 96 ©ALGEBRA
terms contain a common binomial factor.
Creative Publications
0