What Happened When the Boarding House Blew Up? Factor each trinomial below. Find one of the factors in each column of binomials. Notice the letter next to one factor and the number next to the other. Write the letter in the box at the bottom of the page that contains the matching number. 0 (5u + 3) 3x2+7x+2 (x - 1) 0 (3x + 1) 2x2+5x+3 3x2 - 16x + 5 ® 6u2 + 5u + 1 0 8u2 - 9u+ 1 0 10u2 + 17u+ 3 ® 9u2 - 9u + 2 0 (5u + 6) • 0 (3t - 1) 0 (n - 1) • (3t + 1) 0 (n - 2) • (t + 1) 0 (3n - 1) CI (2n - 1) • (3t - 7) • (4t - 7) 3n2 + 2n - 1 5n2 - 4n - 1 2n2 + 5n - 3 7n2 - 13n - 2 0 3t2 + 14t - 5 4t2-11t+7 () 6t2 + 5t - 1 0 3t2 - 20t - 7 2 3 4 (2u+ 1) 0 (3x - 1) 0 (u - 1) 5u2+11u+6 1 ® 0 (3u - 1) ® (2u + 3) • (x + 1) 0 7x2 - 9x + 2 0 OY (3u - 2) (x - 5) (8u - 1) (7x - 2) (5u + 1) (x + 2) (7x + 2) (2x + 3) (u + 1) (3u + 1) ON (n + 3) ® • (t - 1) (2t + 1) OO (n + 1) OF (t+ 5) (5n + 1) (t-7) ® (7n + 1) (6t - 1) 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 1 OBJECTIVE 3—o: To factor trinomials of the form axe + bx + c, where a is a positive integer greater than 1. ALGEBRA WITH PIZZAZZ! © Creative Publications 91 OD %/t--1-A:r 17117 IA Z.LAN)Gr %/kf' N) 1•4P-), Z1A\)Gf Gfc2IN)Gr 1•4e9U-Nrroesc-IN) GI Ik/VIN)Gr IN Q r Factor each trinomial below. Find both factors in the rectangle below and cross out each box containing a factor. You will cross out two boxes for each exercise. When you finish, print the letters from the remaining boxes in the 13 co_ squares at the bottom of the page. CD m CD > sa) N 1 • O 6x2+ N 19x + 3® 5x2 — 9x — 2 0co ® - ® co 0 -0 15m2 + 19m + 6 9x2 + 15x + 4 0 8m2 — 5m — 3 0 4m 2 _17m+ 18 7x 2 + x — 8 0 14m2 + 17m — 22 0 2x2 — 21x + 40 3m2 — m — 30 TH AT PA DO NE (4m — 9) (3x + 1) ( m — 2) (m — 3) (2x — 5) UP UW IN PL AN DA RE (6x + 1) (15m + 1) (m + 2) (x + 4) (5m + 3) (x — 2) CO LD IB ER AJ ET (7x + 8) (3x + 4) (7x + 2) (8m + 3 (m + 3) (7m + 2) (x + 3) XT CK (3m — 10) (14m — 11) ON (x — 8) YO UR (2m — 3) (5x + 1) MA , TT (3m + 2) (9x + 2) HI GH m—1 1) How Can Fishermen Save Gas ? Factor each polynomial below. Find one of the factors in each column of binomials. Notice the letter next to one factor and the number next to the other. Write the letter in the box at the bottom of the page that contains the matching number. 0 OO ® (2n + 7) 0 (n + 5) • (n — 1) • (n — 4) @ (2n — 7) ® (n — 5) (3n — 5) (n + 8) OK (3n — 1) OA (n + 6) (n + 1) 0 (n + 2) • (n + 8) 4n2 — 49 2 17 ± 8n + 12 n 2 — 9n + 20 2 fl + 16n + 64 n2 + 2n— 15 3n2 — 8n + 5 *&+:.!+&+&+&*&+/Zk)&+&+k)W&WW1 4&&&+&kl+/14+&,&+&+ 0 0 0 0 0 +&& .+&+k)WWW &&+ 4+&+&+& , ® (2a + 1) ® (a— 6) (a — 3) © (a + 3) O (5a — 1) ® (2a — 1) ON (1 + 3a2) • (a — 5) @ (a + 7) a2 + 4a — 21 5a 2 + 9a — 2 0 0 (5a + 1) O (a + 2) @ (a — 1) (1 — 3a2) (2a + 5) 2a2 + 11a + 15 1 — 9a4 0 a2 — 11a + 30 10a 2 — 3a — 1 (n — 3) &&+&+&+&WW+ 4.+(Z/WW&Ikfk+&+&.+&+&+&+&+k &+k+WZ,W+(-4+(44WWWW&WW&.+&+&Wv-Z/fkif& 13 1 8u2 + 19u + 6 0 @ 25u2 — 20u + 4 3u2 — 11u — 14 0 ® ® u2 — 4u — 21 6u2 + 17u — 10 2u2 + 5u — 18 1 2 3 4 © 5 6 7 OBJECTIVE 3—p: To factor polynomials using the methods on preceding pages (review). 8 (u+ 3) (2u + 9) (u — 3) (5u — 2) (3u — 14) (u+ 2) (3u + 10) OM (u + 1) ® (2u + 1) © (8u + 3) ® (2u — 1) (u —7) 2) (5u — 2) ® (u — 9 1 0 11 12 13 14 15 16 17 18 ALGEBRA WITH PIZZAZZ! © Creative Publications 93 What Do You Call a Sore on a Police Officer's Foot ? Factor completely each polynomial below. Find your answer and notice the letter next to it. Write this letter-in the box containing the number of that exercise. 0 3x2 — 15x + 18 x3 + 11x2 + 10x 8x3 — 18x 5x3 — 40x2 + 60x 4x2 + 8x — 60 2x3 — 20x2 — 48x 4m2 — 18m + 14 15m3 + 24m2 + 9m 15m2 — 10m — 25 50m3 — 2m 3m2 — 10m + 8 60m3 + 54m2 — 6m (( ( ( Answers: Answers: 0 5x(x + 3)(x — 4) ON 2x(2x + 3)(2x — 3) 0 2x(x + 6)(x — 4) © 3(x — 2)(x — 3) © 4(x + 5)(x — 3) OA x(x + 5)(x + 3) ® 4(x + 5)(x — 1) 0 x(x + 10)(x + 1) • 2x(x — 12)(x + 2) • 5x(x — 2)(x — 6) ® 2x(4x + 9)(x + 1) 5 94 8 11 7 ALGEBRA WITH PIZZAZZ! © Creative Publications O O O O O O O O O O ( ( 3m(5m + 3)(m + 1) 5(3m + 1)(m — 5) (3m — 4)(m — 2) 2(2m + 1)(m + 7) 5(3m — 5)(m + 1) 6m(5m — 1)(2m — 1) 3m(5m + 2)(m — 1) 2(2m — 7)(m — 1) 2m(5m + 1)(5m — 1) 6m(10m — 1)(m + 1) (3m — 2)(m + 4) 0 1 3 9 6 2 12 4 10 OBJECTIVE 3—q: To factor polynomials completely (excludes factoring by grouping). 0 Old Lawyers Never Die, They Just w m 0 H m 14 12 5 4 1 10 4 7 9 2 13 13 4 2 14 Old Skiers Never Die, They Just H 0 0 0 8 12 3 12 6 -0 0 11 10 7 14 14 YOU MAY HAVE HEARD THAT OLD MATH TEACHERS NEVER DIE, THEY JUST REDUCE TO LOWEST TERMS. TO FIND OUT WHAT HAPPENS TO OLD LAWYERS AND SKIERS, FOLLOW THESE DIRECTIONS: Factor completely each polynomial below. Find your answer in the appropriate answer column and notice the letter next to it. Each time the exercise number appears in the code, write this letter above it. 0 C. 0(-) 03 Answers for 1-7: cT CD 2x2 + 22x + 36 Answers for 8-14: (3x + 5)(x — 2) 5x3 — 10x2 — 40x u2(5u — 1)(3u + 1) 5x(2x — 7)(x + 1) 18x3 — 98x 3u(4u + 3)(u + 3) iv0 2(x + 2)(x + 9) axe — 7ax + 12a 0 a(x + 6)(x + 2) x4 + 8x3 — 20x2 o x2 (x + 10)(x — 2) 3x2 + 13x + 10 2x(3x + 7)(3x — 7) 10x3 — 25x2 — 35x (u + 1)(u — 1)(u + 3)(u — 3) 2v(u — 7)(u — 2) 4(3u + 6)(u — 1) (u2 + 9)(u + 1)(u — 2) • r- x2 (x + 4)(x — 5) 12u2 — 28u — 24 `4(3u + 2)(u — 3) @Co 2(x + 3)(x + 6) u4 — 3u2 — 4 u2 (15u + 1)(u — 1) 5x(x — 4)(x + 2) 15u4 + 2u 3 — u2 5(8u + 11)(u — 1) 2x(9x — 7)(x + 7) 2u2v — 1 8uv + 28v (3x + 10)(x + 1) 12u 3 + 36u2 + 27u 2v(u + 14)(u + 1) (u2 + 1)(u + 2)(u — 2) 5x(2x — 1)(x + 7) 40u2 + 15u — 55 5(4u + 11)(2u + 1) a(x — 3)(x — 4) u4 — 10u2 + 9 3u(2u + 3)2 CD X 0 co co 0 -0. > 0 m 2> N ON (7, N CD O Did You Hear About... A B C D E F G H I J K L M N ??? Answers for H-N: Answers for A-G: (6 - h)(x3 - 4) (2b - 3)(r + 4) MISS HUNTED (5t2 - 1 )(t + 7) (5c - d)(2c - d) Factor each expression below. Find your answer in the appropriate WHEN MADE answer column and notice the word (6h - 1)(x3 - 4) (x + 3)(x - 2) beneath it. Write this word in the box containing the letter of that ON THE exercise. Keep working and you'll hear what's "bruin." (a - 2b)(5a + 3b) (a + 2)(5a - 2) OA x(x - 2) + 3(x - 2) BEAR HE (x2 + 1)(k + 4) (2d + 1)(5 - n2) ® a(2a + 5) + 2(2a + 5) BEAR RANGER n(3n - 1) - 5(3n - 1) (k2 - 7)(x + 3) (a - 2b)(3a - 5b) ® 2b(r + 4) - 3(r + 4) THE PUT ® (x2 + 1)k + (x2 + 1)4 (a + 2)(2a + 5) (w2 + 1)(3w - 1) OF (5c - d)(2c) + (5c - d)(4d) MAN FOREST ® k2(x + 3) - 7(x + 3) (k - 2)(x + 3) (2d - 5)(5 — n2) 0 w2(3w - 1) + (3w - 1) DEER SHOOT 0 2d(5 - n2) + (5 - n2) (n - 5)(3n - 1) (3u2 - v2)( u 2 + v2) ® 5t2(t + 7) - (t + 7) WHO HIM 3u2(u2 + v2) - v2( u 2 + v2) (y2 + 3)2 (2b + 4)(r - 3) ® (a - 2b)3a - (a - 2b)5b SHOT CLOTHES 0 6h(x3 4) (x3 4) (5c - d)(2c + 4d) ( u 2 + 3v 2 )(u 2 + v2) + 3) 3)y2 3(y2 + O N UNTIL A OBJECTIVE 3—r: To factor a polynomial whose WITH PIZZAZZ! 96 ©ALGEBRA terms contain a common binomial factor. Creative Publications 0
© Copyright 2026 Paperzz