Taylor Series Problems APPM 2350 Spring 2014 1. Use Taylor’s formula for f (x, y) to find second order and third order approximations of f near the origin. (a) f (x, y) = x3 y 3 + sin x cos y Solution: fx =3x2 y 3 + cos x cos y, fy =3x3 y 2 − sin x sin y. fxx =6xy 3 − sin x cos y, fxy =9x2 y 2 − cos x sin y, fyy =6x3 y − sin x cos y. fxxx =6y 3 − cos x cos y, fxxy =18xy 2 + sin x sin y, fxyy =18x2 y − cos x cos y, fyyy =6x3 + sin x sin y. T2 (x, y) =0 + (1)x + (0)y + 1 (0)x2 + 2(0)xy + (0)y 2 2 =x 1 (−1)x3 + 3(0)x2 y + 3(−1)xy 2 + (0)y 3 6 1 1 = x − x3 − xy 2 6 2 T3 (x, y) =x + Note: You will get the same answer if you instead find T2 and T3 for the function g(x, y) = sin x cos y, because x3 y 3 is already a Taylor series of degree 6. (b) f (x, y) = ln (3x + 2y + 1) Solution: 3 , 3x + 2y + 1 2 . fy = 3x + 2y + 1 fx = −9 , (3x + 2y + 1)2 −6 , = (3x + 2y + 1)2 −4 = . (3x + 2y + 1)2 fxx = fxy fyy 9 [2 (3x + 2y + 1) 3] (3x + 2y + 1)4 9 [2 (3x + 2y + 1) 2] = (3x + 2y + 1)4 6 [2 (3x + 2y + 1) 2] = (3x + 2y + 1)4 4 [2 (3x + 2y + 1) 2] = (3x + 2y + 1)4 fxxx = fxxy fxyy fyyy T2 (x, y) =0 + 3x + 2y + 54 , (3x + 2y + 1)3 36 = , (3x + 2y + 1)3 24 = , (3x + 2y + 1)3 16 = . (3x + 2y + 1)3 = 1 (−9)x2 + 2(−6)xy + (−4)y 2 2 9 = 3x + 2y − x2 − 6xy − 2y 2 2 9 2 1 2 T3 (x, y) = 3x + 2y − x − 6xy − 2y + (54)x3 + 3(36)x2 y + 3(24)xy 2 + (16)y 3 2 6 9 8 = 3x + 2y − x2 − 6xy − 2y 2 + 9x3 + 18x2 y + 12xy 2 + y 3 2 3 Alternate Solution: ln [1 + (3x + 2y)] = (3x + 2y) − (3x + 2y)2 (3x + 2y)3 + − ··· 2 3 9 8 = 3x + 2y − x2 − 6xy − 2y 2 + 9x3 + 18x2 y + 12xy 2 + y 3 − · · · 2 3 2. Use Taylor’s formula for f (x, y) to find second order and third order approximations of f near the origin. Estimate the error in using the second order approximation if |x| ≤ 0.2 and |y| ≤ 0.1. (a) f (x, y) = ex+y sin(x + y) Solution: fx =ex+y cos(x + y) + sin(x + y)ex+y =ex+y [sin(x + y) + cos(x + y)] , fy =fx . fxx =ex+y [cos(x + y) − sin(x + y)] + [sin(x + y) + cos(x + y)] ex+y =2ex+y cos(x + y), fxy =fxx , fyy =fxx . fxxx =2 ex+y [− sin(x + y)] + cos(x + y)ex+y fxxy fxyy fyyy =2ex+y [cos(x + y) − sin(x + y)] , =fxxx , =fxxx , =fxxx . 1 (2)x2 + 2(2)xy + (2)y 2 2 2 = x + y + x + 2xy + y 2 T2 (x, y) =0 + (1)x + (1)y + 1 T3 (x, y) = x + y + x2 + 2xy + y 2 + (2)x3 + 3(2)x2 y + 3(2)xy 2 + (2)y 3 6 1 1 = x + y + x2 + 2xy + y 2 + x3 + x2 y + xy 2 + y 3 3 3 1 |fxxx | |x|3 + 3 |fxxy | |x|2 |y| + 3 |fxyy | |x||y|2 + |fyyy | |y|3 6 1 ≤ 1(.2)3 + 3(.2)2 (.1) + 3(.2)(.1)2 + 1(.1)3 2e0.3 [cos 0 + sin(.3)] 6 ≈ 0.0157 |R2 (x, y)| ≤ (b) f (x, y) = cos (x2 + y 2 ) Solution: fx = − 2x sin x2 + y 2 , fy = − 2y sin x2 + y 2 . fxx = − 2 x 2x cos x2 + y 2 + sin x2 + y 2 = − 2 2x2 cos x2 + y 2 + sin x2 + y 2 , fxy = − 4xy cos x2 + y 2 , fyy = − 2 y 2y cos x2 + y 2 + sin x2 + y 2 = − 2 2y 2 cos x2 + y 2 + sin x2 + y 2 . fxxx = − 2 2x2 −2x sin x2 + y 2 + cos x2 + y 2 (4x) + 2x cos x2 + y 2 = − 4x −2x2 sin x2 + y 2 + 3 cos x2 + y 2 , fxxy = − 2 −4x2 y sin x2 + y 2 + 2y cos x2 + y 2 = − 4y −2x2 sin x2 + y 2 + cos x2 + y 2 , fxyy = − 4x y −2y sin x2 + y 2 + cos x2 + y 2 = − 4x −2y 2 sin x2 + y 2 + cos x2 + y 2 , fyyy = − 2 2y 2 −2y sin x2 + y 2 + cos x2 + y 2 (4y) + 2y cos x2 + y 2 = − 4y −2y 2 sin (x + y) + 3 cos x2 + y 2 . All of these derivatives are zero at the origin, so T2 (x, y) = 1 and T3 (x, y) = 1 1 |fxxx | |x|3 + 3 |fxxy | |x|2 |y| + 3 |fxyy | |x||y|2 + |fyyy | |y|3 6 1 ≤ (4)(.2) 2(.2)2 sin (.2)2 + (.1)2 + 3 (.2)3 6 +3(4)(.1) 2(.2)2 sin (.2)2 + (.1)2 + 1 (.2)2 (.1) +3(4)(.2) 2(.1)2 sin (.2)2 + (.1)2 + 1 (.2)(.1)2 +(4)(.1) 2(.1)2 sin (.2)2 + (.1)2 + 3 (.1)3 |R2 (x, y)| ≤ ≈ 0.005 Note: Since T2 = T3 , the error is probably much lower than this.
© Copyright 2026 Paperzz