Chapter 1 15) We show that n2 + 3n3 ∈ O(n3) because for n≥0, n2 + 3n3 ≤ 4n3 , we can take c = 4, N = 0 to obtain our result. We show that n2 + 3n3 ∈ Ω(n3) because for n≥0, n2 + 3n3 ≥ 3n3 , we can take c = 3, N = 0 to obtain our result. Thus, since n2 + 3n3 ∈ O(n3) and n2 + 3n3 ∈ Ω(n3), n2 + 3n3 ∈ Θ(n3). 16) 6n2 + 20n O(n3):c=1 6n2 + 20n ≤ n3 ⇒6n + 20 ≤ n2 N=9 3 Ω (n ):c=0 6n2 + 20n ≤ 0 ⇒3n + 10 ≤ 0 ⇒3n ≤ -10 N=-4 18) p(n) = aknk + ak-1nk-1 + … + a1n + a0 p(n) ∈Θ(nk) aknk + ak-1nk-1 + … + a1n + a0 let c = ak + ak+1 + … + a1 + a0 then aknk + ak-1nk-1 + … + a1n + a0 ≤ aknk + ak-1nk + … + a1nk + a0 nk = ( ak + ak-1 + … + a1 + a0)nk =cnk ⇒aknk + ak-1nk-1 + … + a1n + a0 ∈ O(nk) since aknk + ak-1nk-1 + … + a1n + a0 ≥ aknk ⇒aknk + ak-1nk-1 + … + a1n + a0 ∈ Ω (nk) thus aknk + ak-1nk-1 + … + a1n + a0 ∈ Θ (nk) 19) n ㏑ n、5n2+7n、nn、nn+㏑ n、10n+n20; 5 ㏒ n、8n+12、en、√n;(㏒ n)2、㏒(n!) ; 2n!、n5/2、n! 、(㏒ n)! Chapter 2 15) T(n)=5T(n/3)+g(n) 16) T(n)=10T(n/3)+ Θ(n2) 17) If at least S(n) to finish S(n+1) = S(n)+1+S(n) = 2S(n)+1 ⇒ the least move times S(1)=1 S(2)=S(1)+1+S(1)=2S(1)+1 S(3)=2S(2)+1 ⇓ S(n)=2S(n-1)+1=2n-1+2n-2+…+2+1 S(n+1)=2S(n)+1=2(2n-1+2n-2+…+2+1)+1 =2n+2n-1+…+2+1 =(2n+1-1)/(2-1) =2n+1-1 ⇒S(n)=2n-1 33) (a) T(n) = 9T(n/3)+ Θ(n) (b) T(n) = 16T(n/4)+ Θ(n)
© Copyright 2026 Paperzz