Assignment: Solve Radical Equations with Extraneous Solutions Choose any four (4) of the five radical equations below. Solve each equation, showing all steps leading to your answer. Then check your answer to determine if any of the solutions are extraneous. 1. x 1 5 x √(x + 1) + 5 = x √(x + 1) + 5 - 5 = x - 5 √(x + 1) = x - 5 (√(x + 1))^2 = (x - 5)^2 x + 1 =5(x 2. x - 5)(x x -05) x + 1 = x^2 - 10x +25 0 - 10x + 25 - x x√(5x) + 1 -- xx == x^2 √(5x) x + x +x 1 = x^2 - 11x=+025 √(5x) = x 1 - 1 = x^2 - 11x + 25 - 1 (√(5x))^2 = x^2 0 = x^2 - 11x + 24 5x = x^2 (x 8)(x 3) = 3. 2 x 1 01 x xx^2 - 8 -=5x 0=0 √(2x + (x)(x 5) x - 8 + 81)=+01+=8x x√(2x =8 0 + 1) + 1 - 1 = x - 1 x√(2x -3 5 =+01) = x - 1 x(√(2x -3 5 ++3 51))^2 = 0 +=3 5 (x - 1)^2 2x + 1 = (x 1)(x x = 5 4. 3 3 x 2 3- 1)4 x 2x + 1 = x^2 - 2x + 1 Checking: √(3x 2) + 3= = 4x 2x ++ √(5 * 1-0) √(8 1)- -2x +05= =0x^2 8 - 2x + 1 - 2x √(3x 2) + 3 3 = 4x - 3 1 = x^2 -0 4x √(0) - 05== √(9) + 8 +1 √(3x 2) = 4x 3 ==0x^2 01 + -- 015= 3 8 - 4x + 1 - 1 (√3x -TRUE 2))^2 = (4xsolution - 3)^2 0 = x^2 0 = 0 -real 8 8 - 4x-real solution 3x 2 = (4x 3)(4x x^2*-25) 4x4 √(5 - =5 0=25x 2- 3)x 5. 3x 2 = (x)(x+--1) 4) √(25) 516x^2 =50 5= 3- 24x + 9 √(3 += 3x 2 3x = 5x -=50+= 55 = 3 16x^2 - 24x + 9 - 3x √(4) +9 x+ - =4516x^2 == 03 - 27x 0-2 = FALSE -extraneous solution 2 -2 + 2 = 16x^2 27x +9+2 x 4 + 4 = 0 + 4 7 = 3 FALSE -extraneous solution 0 = 416x^2 - 27x + 11 x= 16x^2 - 27x + 11 = 0 Checking: (x 1)(16x 11) = 00 √(2 * 0 + 1)- + 1= x√(0 - 1+=1)0 + 1 = 0 x√(1) - 1+ + 11 = = 00 + 1 x1 = 1 +1=0 16x = 0 -extraneous solution 2 = 0- 11 FALSE 16x 11 0+ √(2 * 4 ++1)11 += 1= 4 11 16x = 11 √(8 + 1) + 1 = 4 16x/16 √(9) + 1==11/16 4 x3 = + 0.6875 1=4 Checking: 4 = 4 TRUE -real solution √(3 * 1 - 2) + 3 = 4 * 1 √(3 - 2) + 3 = 4 * 1 √(1) + 3 = 4 * 1 1+3=4*1 4=4*1 4 = 4 TRUE -real solution √(3 * 0.6875 - 2) + 3 = 4 * 0.6875 √(2.0625 - 2) + 3 = 4 * 0.6875 √(0.0625) + 3 = 4 * 0.6875 0.25 + 3 = 4 * 0.6875 3.25 = 4 * 0.6875 3.25 = 2.75 FALSE -extraneous solution © K12 Inc.
© Copyright 2026 Paperzz