590 CHAPTER 5 THE INTEGRAL y 1 θ x 1 b 87. Suppose that f and g are continuous functions such that, for all a, Z a !a f .x/ dx D Z a g.x/ dx !a Give an intuitive argument showing that f .0/ D g.0/. Explain your idea with a graph. Ra Ra SOLUTION Let !a f .x/ dx D !a g .x/ dx. Consider what happens as a decreases in size, becoming very close to zero. Intuitively, the areas of the functions become .a ! .!a//.f .0// D 2a.f .0// and .a ! .!a//.g.0// D 2a.g.0//. Because we know these areas must be the same, we have 2a.f .0// D 2a.g.0// and therefore f .0/ D g.0/. 88. Theorem 4 remains true without the assumption a " b " c. Verify this for the cases b < a < c and c < a < b. Rc Rb Rc SOLUTION The additivity property of definite integrals states for a " b " c, we have a f .x/ dx D a f .x/ dx C b f .x/ dx. Rc Ra Rc " Suppose that we have b < a < c. By the additivity property, we have b f .x/ dx D b f .x/ dx C a f .x/ dx. Therefore, Rc Rc Ra Rb Rc a f .x/ dx D b f .x/ dx ! b f .x/ dx D a f .x/ dx C b f .x/ dx. Rb Ra Rb " Now suppose that we have c < a < b. By the additivity property, we have c f .x/ dx D c f .x/ dx C a f .x/ dx. Rc Ra Rb Rb Rb Rc Therefore, a f .x/ dx D ! c f .x/ dx D a f .x/ dx ! c f .x/ dx D a f .x/ dx C b f .x/ dx. " Hence the additivity property holds for all real numbers a, b, and c, regardless of their relationship amongst each other. 5.3 The Fundamental Theorem of Calculus, Part I Preliminary Questions 1. Suppose that F 0 .x/ D f .x/ and F .0/ D 3, F .2/ D 7. (a) What is the area under y D f .x/ over Œ0; 2! if f .x/ # 0? (b) What is the graphical interpretation of F .2/ ! F .0/ if f .x/ takes on both positive and negative values? SOLUTION (a) If f .x/ # 0 over Œ0; 2!, then the area under y D f .x/ is F .2/ ! F .0/ D 7 ! 3 D 4. (b) If f .x/ takes on both positive and negative values, then F .2/ ! F .0/ gives the signed area between y D f .x/ and the x-axis. 2. Suppose that f .x/ is a negative function with antiderivative F such that F .1/ D 7 and F .3/ D 4. What is the area (a positive number) between the x-axis and the graph of f .x/ over Œ1; 3!? Z 3 SOLUTION f .x/ dx represents the signed area bounded by the curve and the interval Œ1; 3!. Since f .x/ is negative on Œ1; 3!, 1 Z 3 f .x/ dx is the negative of the area. Therefore, if A is the area between the x-axis and the graph of f .x/, we have: 1 AD! 3. (a) (b) (c) Z 3 1 f .x/ dx D ! .F .3/ ! F .1// D !.4 ! 7/ D !.!3/ D 3: Are the following statements true or false? Explain. FTC I is valid only for positive functions. To use FTC I, you have to choose the right antiderivative. If you cannot find an antiderivative of f .x/, then the definite integral does not exist. SOLUTION (a) False. The FTC I is valid for continuous functions. (b) False. The FTC I works for any antiderivative of the integrand. (c) False. If you cannot find an antiderivative of the integrand, you cannot use the FTC I to evaluate the definite integral, but the definite integral may still exist. The Fundamental Theorem of Calculus, Part I S E C T I O N 5.3 4. Evaluate SOLUTION Z 9 2 f 0 .x/ dx where f .x/ is differentiable and f .2/ D f .9/ D 4. Because f is differentiable, Z 9 f 0 .x/ dx D f .9/ ! f .2/ D 4 ! 4 D 0. 2 Exercises In Exercises 1–4, sketch the region under the graph of the function and find its area using FTC I. 1. f .x/ D x 2 , Œ0; 1! SOLUTION y 1 0.8 0.6 0.4 0.2 x 0.2 0.4 0.6 0.8 1 We have the area AD 2. f .x/ D 2x ! x 2 , Œ0; 2! Z 1 0 ˇ 1 3 ˇˇ1 1 x dx D x ˇ D : 3 3 0 2 SOLUTION y 1 0.8 0.6 0.4 0.2 0.5 Let A be the area indicated. Then: Z 2 Z AD .2x ! x 2 / dx D 0 3. f .x/ D x !2 , 2 0 2x dx ! Z 2 0 Œ1; 2! 1 1.5 2 x ˇ2 ˇ ! " ˇ 1 ˇ2 8 4 x 2 dx D x 2 ˇˇ ! x 3 ˇˇ D .4 ! 0/ ! !0 D : 3 3 3 0 0 SOLUTION y 1.0 0.8 0.6 0.4 0.2 x 1.0 1.2 1.4 1.6 1.8 2.0 We have the area AD # 4. f .x/ D cos x, 0; SOLUTION ! 2 $ Z 2 1 x !2 ˇ2 x !1 ˇˇ 1 1 dx D ˇ D! C1D : !1 ˇ 2 2 1 591 592 CHAPTER 5 THE INTEGRAL y 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 x Let A be the shaded area. Then AD Z !=2 0 0 In Exercises 5–42, evaluate the integral using FTC I. Z 6 5. x dx 3 SOLUTION 6. Z 9 Z 6 x dx D 3 2 dx 0 SOLUTION 7. Z 1 0 8. 2 SOLUTION 9. 2 0 10. 2 !2 Z 0 3 12. 1 !1 13. 1 0 Z ˇ1 ˇ .4x ! 9x 2 / dx D .2x 2 ! 3x 3 /ˇˇ D .2 ! 3/ ! .0 ! 0/ D !1. 0 2 !3 u2 du D ˇ 1 3 ˇˇ2 1 1 35 u ˇ D .2/3 ! .!3/3 D . 3 3 3 3 !3 Z 2 0 ˇ2 ˇ .12x 5 C 3x 2 ! 4x/ dx D .2x 6 C x 3 ! 2x 2 /ˇˇ D .128 C 8 ! 8/ ! .0 C 0 ! 0/ D 128. 0 Z ! " ˇ2 ! " ! " ˇ 1 1 1 .10x 9 C 3x 5 / dx D x 10 C x 6 ˇˇ D 210 C 26 ! 210 C 26 D 0: 2 2 2 !2 !2 2 Z 0 3 .2t 3 ! 6t 2 / dt D .5u4 C u2 ! u/ du SOLUTION Z Z .2t 3 ! 6t 2 / dt SOLUTION Z 0 .10x 9 C 3x 5 / dx SOLUTION 11. 0 .12x 5 C 3x 2 ! 4x/ dx SOLUTION Z ˇ9 ˇ 2 dx D 2x ˇˇ D 2.9/ ! 2.0/ D 18. 9 u2 du !3 Z ˇ 1 2 ˇˇ6 1 1 27 x ˇ D .6/2 ! .3/2 D . 2 2 2 2 3 .4x ! 9x 2 / dx SOLUTION Z Z ˇ!=2 ˇ cos x dx D sin x ˇˇ D 1 ! 0 D 1: 4p Z 1 !1 ! "ˇ0 ! " ˇ 1 4 81 27 t ! 2t 3 ˇˇ D .0 ! 0/ ! ! 54 D . 2 2 2 3 .5u4 C u2 ! u/ du D y dy ! "ˇ1 ! " ! " ˇ 1 1 1 1 1 1 8 u5 C u3 ! u2 ˇˇ D 1 C ! ! !1 ! ! D . 3 2 3 2 3 2 3 !1 0 SOLUTION Z 4p 0 y dy D Z 4 0 y 1=2 dy D ˇ 2 3=2 ˇˇ4 2 2 16 y ˇ D .4/3=2 ! .0/3=2 D . 3 3 3 3 0 The Fundamental Theorem of Calculus, Part I S E C T I O N 5.3 14. Z 8 x 4=3 dx 1 SOLUTION 15. Z 1 Z 8 ˇ 3 7=3 ˇˇ8 3 381 x ˇ D .128 ! 1/ D . 7 7 7 1 x 4=3 dx D 1 t 1=4 dt 1=16 SOLUTION 16. Z 1 SOLUTION 17. 3 dt t2 1 SOLUTION 18. Z 4 SOLUTION 19. 1=16 1 1=2 Z Z 1 Z 4 3 dt D t2 1 4 x 1 8 dx x3 Z 1 1=2 Z !1 1 dx x3 Z !1 !2 SOLUTION 21. Z 2 1 !2 22. 9 1 23. 27 1 3 1 !4 ˇ3 ˇ 1 2 t !2 dt D !t !1 ˇˇ D ! C 1 D . 3 3 1 ˇ 1 !3 ˇˇ4 1 1 21 dx D ! x ˇ D ! .4/!3 C D . 3 3 3 64 1 8 dx D x3 Z 1 8x 1=2 Z 2 1 !3 Z 9 1 dx D !4x ˇ1 ˇ ˇ !2 ˇ 1=2 D !4 C 16 D 12. ˇ 1 1 !2 ˇˇ!1 1 1 3 dx D ! x ˇ D ! .!1/!2 C .!2/!2 D ! . 2 2 2 8 x3 !2 .x 2 ! x !2 / dx D ! t !1=2 dt SOLUTION Z Z .x 2 ! x !2 / dx SOLUTION Z ˇ 2 7=2 ˇˇ1 2 254 t ˇ D .1 ! 128/ D ! . 7 7 7 4 t 5=2 dt D SOLUTION 20. ˇ 4 5=4 ˇˇ1 4 1 31 t ˇ D ! D . 5 5 40 40 1=16 t 1=4 dt D x !4 dx 1 Z 1 t 5=2 dt 4 Z Z " ˇ2 ! " ! " ˇ 1 3 8 1 1 11 x C x !1 ˇˇ D C ! C1 D : 3 3 2 3 6 1 ˇ9 ˇ t !1=2 dt D 2t 1=2 ˇˇ D 2.9/1=2 ! 2.1/1=2 D 4. 1 t C1 p dt t SOLUTION Z 1 24. Z 1 8=27 27 t C1 p dt D t Z 27 .t 1 D ! 10t 4=3 ! 8t 1=3 dt D t2 Z 10t 4=3 ! 8t 1=3 dt t2 1=2 Ct !1=2 / dt D " ˇ27 ˇ 2 3=2 1=2 ˇ t C 2t ˇ 3 1 " p 8 C 2 D 60 3 ! : 3 ! " ! p 2 p 2 .81 3/ C 6 3 ! 3 3 SOLUTION Z 1 8=27 1 8=27 D .30t .10t !2=3 ! 8t !5=3 / dt 1=3 C 12t !2=3 ˇ1 ˇ /ˇˇ 8=27 D .30 C 12/ ! .20 C 27/ D !5: 593 594 25. THE INTEGRAL CHAPTER 5 Z 3!=4 sin " d" !=4 SOLUTION 26. Z Z 3!=4 !=4 4! sin x dx 2! SOLUTION 27. Z Z !=2 cos 0 SOLUTION 28. Z Z 4! 2! p p ˇ3!=4 p ˇ 2 2 sin " d" D ! cos " ˇˇ D C D 2: 2 2 !=4 ˇ4! ˇ sin x dx D ! cos x ˇˇ D !1 ! .!1/ D 0: 2! ! 1 " d" 3 !=2 0 5!=8 ! ! "ˇ!=2 1 1 ˇˇ 3 cos " d" D 3 sin " ˇ D . 3 3 2 0 cos 2x dx !=4 SOLUTION Z Z 5!=8 !=4 p ˇ5!=8 ˇ 1 1 5# 1 # 2 1 ˇ cos 2x dx D sin 2x ˇ D sin ! sin D ! ! . 2 2 4 2 2 4 2 !=4 % #& sec2 3t ! dt 6 0 ˇ ! " Z !=6 % % #& 1 # &ˇˇ!=6 1 p 1 4 SOLUTION sec2 3t ! dt D tan 3t ! D 3 C p D p . ˇ 6 3 6 3 3 3 3 0 0 Z !=6 30. sec " tan " d" 29. !=6 0 SOLUTION 31. Z Z !=6 0 !=10 p ˇ!=6 ˇ # 2 3 ˇ sec " tan " d" D sec " ˇ D sec ! sec 0 D ! 1. 6 3 0 csc 5x cot 5x dx !=20 SOLUTION 32. Z !=14 Z !=10 !=20 ˇ!=10 p & ˇ 1 1% 1 p csc 5x cot 5x dx D ! csc 5x ˇˇ D ! 1 ! 2 D . 2 ! 1/. 5 5 5 !=20 csc2 7y dy !=28 SOLUTION 33. Z 1 Z !=14 !=28 e x dx 0 SOLUTION 34. Z 5 3 35. 3 1 0 e !4x dx SOLUTION Z Z Z 5 3 e 1!6t dt 0 SOLUTION 36. Z 2 3 Z 3 0 e 4t !3 dt ˇ!=14 ˇ 1 1 # 1 # 1 csc2 7y dy D ! cot 7y ˇˇ D ! cot C cot D . 7 7 2 7 4 7 !=28 ˇ1 ˇ e x dx D e x ˇˇ D e ! 1. 0 ˇ5 ˇ 1 1 1 e !4x dx D ! e !4x ˇˇ D ! e !20 C e !12 . 4 4 4 3 ˇ3 ˇ 1 1 1 1 e 1!6t dt D ! e 1!6t ˇˇ D ! e !17 C e D .e ! e !17 /. 6 6 6 6 0 S E C T I O N 5.3 SOLUTION 37. Z 10 2 38. !4 !12 39. 1 0 e 2 Z 10 2 dx x SOLUTION Z 3 Z dt t C1 Z !12 1 40. 4 1 0 dt 5t C 4 Z 4 SOLUTION 1 41. Z 0 !2 ˇ 1 4t !3 ˇˇ3 1 9 1 5 dt D e ˇ D 4e ! 4e . 4 2 ˇ10 ˇ dx D ln jxjˇˇ D ln 10 ! ln 2 D ln 5. x 2 !4 SOLUTION Z 4t !3 dx x SOLUTION Z Z The Fundamental Theorem of Calculus, Part I ˇ!4 ˇ dx 1 D ln jxjˇˇ D ln j!4j ! ln j!12j D ln D ! ln 3. x 3 !12 ˇ1 ˇ dt D ln jt C 1jˇˇ D ln 2 ! ln 1 D ln 2. t C1 0 ˇ4 ˇ dt 1 1 1 1 24 D ln j5t C 4jˇˇ D ln 24 ! ln 9 D ln . 5t C 4 5 5 5 5 9 1 .3x ! 9e 3x / dx SOLUTION 0 !2 ! .3x ! 9e 3x / dx D "ˇ0 ˇ 3 2 x ! 3e 3x ˇˇ D .0 ! 3/ ! .6 ! 3e !6 / D 3e !6 ! 9. 2 !2 " 1 dx x 2 " ! "ˇ6 Z 6! ˇ 1 1 2 SOLUTION xC dx D x C ln jxj ˇˇ D .18 C ln 6/ ! .2 C ln 2/ D 16 C ln 3. x 2 2 2 42. Z 6! Z xC In Exercises 43–48, write the integral as a sum of integrals without absolute values and evaluate. Z 1 43. jxj dx !2 SOLUTION 44. Z Z 5 1 !2 jxj dx D Z 0 !2 .!x/ dx C Z 0 j3 ! xj dx 0 1 ˇ ˇ ! " 1 ˇ0 1 ˇ1 1 1 5 x dx D ! x 2 ˇˇ C x 2 ˇˇ D 0 ! ! .4/ C D : 2 2 2 2 2 !2 0 SOLUTION Z 45. Z 3 !2 ! " ˇ3 ! " ˇ5 ˇ ˇ 1 1 2 .x ! 3/ dx D 3x ! x 2 ˇˇ C x ! 3x ˇˇ 2 2 0 3 0 3 ! " ! " ! " 9 25 9 13 D 9! !0C ! 15 ! !9 D : 2 2 2 2 5 0 j3 ! xj dx D Z 3 .3 ! x/ dx C Z 5 jx 3 j dx SOLUTION Z 3 !2 jx 3 j dx D Z 0 !2 .!x 3 / dx C Z 3 0 ˇ ˇ 1 ˇ0 1 ˇ3 x 3 dx D ! x 4 ˇˇ C x 4 ˇˇ 4 4 !2 0 1 97 1 D 0 C .!2/4 C 34 ! 0 D : 4 4 4 595 596 46. THE INTEGRAL CHAPTER 5 Z 3 0 jx 2 ! 1j dx SOLUTION Z 47. Z ! 3 0 ! "ˇ ! " ˇ3 ˇ 1 3 ˇˇ1 1 3 jx ! 1j dx D .1 ! x / dx C .x ! 1/ dx D x ! x ˇ C x ! x ˇˇ 3 3 0 1 0 1 ! " ! " 1 1 22 D 1! ! 0 C .9 ! 3/ ! !1 D : 3 3 3 Z 2 1 Z 2 3 2 jcos xj dx 0 SOLUTION 48. Z Z 5 0 ! jcos xj dx D 0 Z !=2 cos x dx C 0 jx 2 ! 4x C 3j dx Z ! !=2 ˇ!=2 ˇ! ˇ ˇ .! cos x/ dx D sin x ˇˇ ! sin x ˇˇ 0 !=2 D 1 ! 0 ! .!1 ! 0/ D 2: SOLUTION Z 5 0 jx 2 ! 4x C 3j dx D D Z Z 5 j.x ! 3/.x ! 1/j dx 0 1 0 .x 2 ! 4x C 3/ dx C Z 1 3 !.x 2 ! 4x C 3/ dx C Z 5 3 .x 2 ! 4x C 3/ dx " ˇ1 ! " ˇ3 ! " ˇ5 ˇ ˇ ˇ 1 3 1 3 1 3 2 2 2 ˇ ˇ D x ! 2x C 3x ˇ ! x ! 2x C 3x ˇ C x ! 2x C 3x ˇˇ 3 3 3 0 1 3 ! " ! " ! " 1 1 125 D ! 2 C 3 ! 0 ! .9 ! 18 C 9/ C !2C3 C ! 50 C 15 ! .9 ! 18 C 9/ 3 3 3 ! D 28 : 3 In Exercises 49–54, evaluate the integral in terms of the constants. Z b 49. x 3 dx 1 SOLUTION 50. Z a SOLUTION 51. b b 1 x 3 dx D x 4 dx b Z Z Z a b x 4 dx D x 5 dx ˇ & 1 4 ˇˇb 1 1 1% 4 x ˇ D b 4 ! .1/4 D b ! 1 for any number b. 4 4 4 4 1 ˇ 1 5 ˇˇa 1 1 x ˇ D a5 ! b 5 for any numbers a, b. 5 5 5 b 1 SOLUTION 52. Z x !x Z b 1 ˇ 1 6 ˇˇb 1 1 1 x dx D x ˇ D b 6 ! .1/6 D .b 6 ! 1/ for any number b. 6 6 6 6 1 5 .t 3 C t/ dt SOLUTION 53. Z 5a a Z dx x SOLUTION Z 5a a x !x .t 3 C t/ dt D ! "ˇ ! " ! " 1 4 1 2 ˇˇx 1 4 1 2 1 4 1 2 t C t ˇ D x C x ! x C x D 0: 4 2 4 2 4 2 !x ˇ5a ˇ dx D ln jxjˇˇ D ln j5aj ! ln jaj D ln 5. x a The Fundamental Theorem of Calculus, Part I S E C T I O N 5.3 54. Z b b2 597 dx x SOLUTION 55. Calculate Z ˇb 2 ˇ dx D ln jxjˇˇ D ln jb 2 j ! ln jbj D ln jbj. x b b2 b Z 3 f .x/ dx, where !2 f .x/ D ( 12 ! x 2 x3 for x " 2 for x > 2 SOLUTION Z 3 !2 56. Calculate Z f .x/ dx D Z 2 !2 f .x/ dx C Z 3 2 f .x/ dx D Z 2 !2 .12 ! x 2 / dx C Z 3 x 3 dx 2 ˇ ! "ˇ 1 3 ˇˇ2 1 4 ˇˇ3 D 12x ! x ˇ C x ˇ 3 4 !2 2 ! " ! " 1 3 1 1 1 D 12.2/ ! 2 ! 12.!2/ ! .!2/3 C 34 ! 24 3 3 4 4 128 65 707 C D : 3 4 12 D 2! f .x/ dx, where 0 f .x/ D ( cos x cos x ! sin 2x for x " # for x > # SOLUTION Z 2! 0 f .x/ dx D 57. Use FTC I to show that SOLUTION We have Z 1 !1 Z ! 0 f .x/ dx C Z 2! ! f .x/ dx D Z 0 ! cos x dx C ˇ! ! "ˇ2! ˇ ˇ 1 D sin x ˇˇ C sin x C cos 2x ˇˇ 2 0 ! !! " ! "" 1 1 D .0 ! 0/ C 0C ! 0C D 0: 2 2 Z 2! ! .cos x ! sin 2x/ dx x n dx D 0 if n is an odd whole number. Explain graphically. Z 1 !1 x n dx D ˇ x nC1 ˇˇ1 .1/nC1 .!1/nC1 D ! : ˇ n C 1 !1 nC1 nC1 Because n is odd, n C 1 is even, which means that .!1/nC1 D .1/nC1 D 1. Hence .1/nC1 .!1/nC1 1 1 ! D ! D 0: nC1 nC1 nC1 nC1 Graphically speaking, for an odd function such as x 3 shown here, the positively signed area from x D 0 to x D 1 cancels the negatively signed area from x D !1 to x D 0. y 1 −0.5 −1 0.5 −0.5 −1 0.5 1 x 598 THE INTEGRAL CHAPTER 5 58. Plot the function f .x/ D sin 3x ! x. Find the positive root of f .x/ to three places and use it to find the area under the graph of f .x/ in the first quadrant. SOLUTION The graph of f .x/ D sin 3x ! x is shown below at the left. In the figure below at the right, we zoom in on the positive root of f .x/ and find that, to three decimal places, this root is approximately x D 0:760. The area under the graph of f .x/ in the first quadrant is then Z 0:760 .sin 3x ! x/ dx D 0 ! "ˇ0:760 ˇ 1 1 ! cos 3x ! x 2 ˇˇ 3 2 0 1 1 1 D ! cos.2:28/ ! .0:760/2 C $ 0:262 3 2 3 y 0.5 x − 0.2 0.2 0.4 0.6 0.8 x 1 0.756 0.758 0.76 0.762 0.764 −0.5 59. Calculate F .4/ given that F .1/ D 3 and F 0 .x/ D x 2 . Hint: Express F .4/ ! F .1/ as a definite integral. SOLUTION By FTC I, F .4/ ! F .1/ D Z 4 x 2 dx D 1 43 ! 13 D 21 3 Therefore F .4/ D F .1/ C 21 D 3 C 21 D 24. 60. Calculate G.16/, where dG=dt D t !1=2 and G.9/ D !5. SOLUTION By FTC I, G.16/ ! G.9/ D Z 16 9 t !1=2 dt D 2.161=2 / ! 2.91=2 / D 2 Therefore G.16/ D !5 C 2 D !3. Z 1 61. Does x n dx get larger or smaller as n increases? Explain graphically. 0 Let n # 0 and consider possibility.) Now SOLUTION Z 0 1 x n dx D ! R1 0 x n dx. (Note: for n < 0 the integrand x n ! 1 as x ! 0C, so we exclude this "ˇ1 ! " ! " ˇ 1 1 1 1 x nC1 ˇˇ D .1/nC1 ! .0/nC1 D ; nC1 n C 1 n C 1 n C 1 0 R1 which decreases as n increases. Recall that 0 x n dx represents the area between the positive curve f .x/ D x n and the x-axis over the interval Œ0; 1!. Accordingly, this area gets smaller as n gets larger. This is readily evident in the following graph, which shows curves for several values of n. y 1 1/4 1/2 1 2 4 0 8 1 x 62. Show that the area of the shaded parabolic arch in Figure 1 is equal to four-thirds the area of the triangle shown. y a a+b 2 b x FIGURE 1 Graph of y D .x ! a/.b ! x/. The Fundamental Theorem of Calculus, Part I S E C T I O N 5.3 SOLUTION 599 We first calculate the area of the parabolic arch: Z b a .x ! a/.b ! x/ dx D ! Z b a .x ! a/.x ! b/ dx D ! ! Z b a .x 2 ! ax ! bx C ab/ dx "ˇb ˇ 1 3 a 2 b 2 D! x ! x ! x C abx ˇˇ 3 2 2 a &ˇb 1 % 3 ˇ D! 2x ! 3ax 2 ! 3bx 2 C 6abx ˇ a 6 % & 1 D ! .2b 3 ! 3ab 2 ! 3b 3 C 6ab 2 / ! .2a3 ! 3a3 ! 3ba2 C 6a2 b/ 6 & 1% D ! .!b 3 C 3ab 2 / ! .!a3 C 3a2 b/ 6 & 1% 1 D ! a3 C 3ab 2 ! 3a2 b ! b 3 D .b ! a/3 : 6 6 The indicated triangle has a base of length b ! a and a height of ! "! " ! " aCb aCb b!a 2 !a b! D : 2 2 2 Thus, the area of the triangle is ! " 1 b!a 2 1 .b ! a/ D .b ! a/3 : 2 2 8 Finally, we note that 1 4 1 .b ! a/3 D % .b ! a/3 ; 6 3 8 as required. Further Insights and Challenges 63. Prove a famous result of Archimedes (generalizing Exercise 62): For r < s, the area of the shaded region in Figure 2 is equal to four-thirds the area of triangle 4ACE, where C is the point on the parabola at which the tangent line is parallel to secant line AE. (a) Show that C has x-coordinate .r C s/=2. (b) Show that ABDE has area .s ! r/3 =4 by viewing it as a parallelogram of height s ! r and base of length CF . (c) Show that 4ACE has area .s ! r/3 =8 by observing that it has the same base and height as the parallelogram. (d) Compute the shaded area as the area under the graph minus the area of a trapezoid, and prove Archimedes’ result. y B C D A F E r r+s 2 x s FIGURE 2 Graph of f .x/ D .x ! a/.b ! x/. SOLUTION (a) The slope of the secant line AE is f .s/ ! f .r/ .s ! a/.b ! s/ ! .r ! a/.b ! r/ D D a C b ! .r C s/ s!r s!r and the slope of the tangent line along the parabola is f 0 .x/ D a C b ! 2x: If C is the point on the parabola at which the tangent line is parallel to the secant line AE, then its x-coordinate must satisfy a C b ! 2x D a C b ! .r C s/ or xD r Cs : 2 600 CHAPTER 5 THE INTEGRAL (b) Parallelogram ABDE has height s ! r and base of length CF . Since the equation of the secant line AE is y D Œa C b ! .r C s/! .x ! r/ C .r ! a/.b ! r/; the length of the segment CF is ! "! " ! " r Cs r Cs r Cs .s ! r/2 !a b! ! Œa C b ! .r C s/! ! r ! .r ! a/.b ! r/ D : 2 2 2 4 Thus, the area of ABDE is .s!r/3 . 4 (c) Triangle ACE is comprised of $ACF and $CEF . Each of these smaller triangles has height Thus, the area of $ACE is s!r 2 and base of length .s!r/2 . 4 1 s ! r .s ! r/2 1 s ! r .s ! r/2 .s ! r/3 % C % D : 2 2 4 2 2 4 8 (d) The area under the graph of the parabola between x D r and x D s is ! "ˇs Z s ˇ 1 1 .x ! a/.b ! x/ dx D !abx C .a C b/x 2 ! x 3 ˇˇ 2 3 r r 1 1 1 1 D !abs C .a C b/s 2 ! s 3 C abr ! .a C b/r 2 C r 3 2 3 2 3 1 1 D ab.r ! s/ C .a C b/.s ! r/.s C r/ C .r ! s/.r 2 C rs C s 2 /; 2 3 while the area of the trapezoid under the shaded region is 1 .s ! r/ Œ.s ! a/.b ! s/ C .r ! a/.b ! r/! 2 h i 1 D .s ! r/ !2ab C .a C b/.r C s/ ! r 2 ! s 2 2 1 1 D ab.r ! s/ C .a C b/.s ! r/.r C s/ C .r ! s/.r 2 C s 2 /: 2 2 Thus, the area of the shaded region is ! " ! " 1 2 1 1 1 1 1 2 1 1 1 .r ! s/ r C rs C s 2 ! r 2 ! s 2 D .s ! r/ r ! rs C s 2 D .s ! r/3 ; 3 3 3 2 2 6 3 6 6 which is four-thirds the area of the triangle ACE. 64. (a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality sin x " x (valid for x # 0) to prove that x2 " cos x " 1 2 1! (b) Apply it again to prove that x! x3 " sin x " x 6 .for x # 0/ (c) Verify these inequalities for x D 0:3. SOLUTION (a) We have Z x 0 ˇx Z ˇ sin t dt D ! cos t ˇˇ D ! cos x C 1 and 0 0 x t dt D ˇ 1 2 ˇˇx 1 t ˇ D x 2 . Hence 2 0 2 ! cos x C 1 " Solving, this gives cos x # 1 ! x2 2 . (b) The previous part gives us 1 ! x2 : 2 cos x " 1 follows automatically. t2 2 " cos t " 1, for t > 0. Theorem 5 gives us, after integrating over the interval Œ0; x!, x! x3 " sin x " x: 6 (c) Substituting x D 0:3 into the inequalities obtained in (a) and (b) yields 0:955 " 0:955336489 " 1 respectively. and 0:2955 " 0:2955202069 " 0:3; The Fundamental Theorem of Calculus, Part I S E C T I O N 5.3 601 65. Use the method of Exercise 64 to prove that 1! x2 x2 x4 " cos x " 1 ! C 2 2 24 x! x3 x3 x5 " sin x " x ! C 6 6 120 (for x # 0) Verify these inequalities for x D 0:1. Why have we specified x # 0 for sin x but not for cos x? SOLUTION cos x, yields: By Exercise 64, t ! 16 t 3 " sin t " t for t > 0. Integrating this inequality over the interval Œ0; x!, and then solving for 1 2 1 x ! x 4 " 1 ! cos x " 2 24 1 1 ! x 2 " cos x " 1 ! 2 x2 2 , These inequalities apply for x # 0. Since cos x, 1 ! Having established that 1! and 1 ! x2 2 C 1 2 x 2 1 2 1 x C x4: 2 24 x4 24 are all even functions, they also apply for x " 0. t2 t2 t4 " cos t " 1 ! C ; 2 2 24 for all t # 0, we integrate over the interval Œ0; x!, to obtain: x! x3 x3 x5 " sin x " x ! C : 6 6 120 1 The functions sin x, x ! 16 x 3 and x ! 16 x 3 C 120 x 5 are all odd functions, so the inequalities are reversed for x < 0. Evaluating these inequalities at x D 0:1 yields 0:995000000 " 0:995004165 " 0:995004167 0:0998333333 " 0:0998334166 " 0:0998334167; both of which are true. 66. Calculate the next pair of inequalities for sin x and cos x by integrating the results of Exercise 65. Can you guess the general pattern? SOLUTION Integrating t! t3 t3 t5 " sin t " t ! C 6 6 120 (for t # 0) over the interval Œ0; x! yields x2 x4 x2 x4 x6 ! " 1 ! cos x " ! C : 2 24 2 24 720 Solving for cos x yields 1! x2 x4 x6 x2 x4 C ! " cos x " 1 ! C : 2 24 720 2 24 Replacing each x by t and integrating over the interval Œ0; x! produces x! x3 x5 x7 x3 x5 C ! " sin x " x ! C : 6 120 5040 6 120 To see the pattern, it is best to compare consecutive inequalities for sin x and those for cos x: 0 " sin x " x x! x! x3 6 " sin x " x x3 x3 x5 " sin x " x ! C : 6 6 120 602 CHAPTER 5 THE INTEGRAL Each iteration adds an additional term. Looking at the highest order terms, we get the following pattern: 0 x ! x3 x3 D! 6 3Š x5 5Š We guess that the leading term of the polynomials are of the form x 2nC1 : .2n C 1/Š .!1/n Similarly, for cos x, the leading terms of the polynomials in the inequality are of the form x 2n : .2n/Š 67. Use FTC I to prove that if jf 0 .x/j " K for x 2 Œa; b!, then jf .x/ ! f .a/j " Kjx ! aj for x 2 Œa; b!. SOLUTION Let a > b be real numbers, and let f .x/ be such that jf 0 .x/j " K for x 2 Œa; b!. By FTC, Z x f 0 .t/ dt D f .x/ ! f .a/: .!1/n a Since f 0 .x/ # !K for all x 2 Œa; b!, we get: f .x/ ! f .a/ D Z x a Since f 0 .x/ " K for all x 2 Œa; b!, we get: f .x/ ! f .a/ D Z f 0 .t/ dt # !K.x ! a/: x a f 0 .t/ dt " K.x ! a/: Combining these two inequalities yields !K.x ! a/ " f .x/ ! f .a/ " K.x ! a/; so that, by definition, jf .x/ ! f .a/j " Kjx ! aj: 68. (a) Use Exercise 67 to prove that j sin a ! sin bj " ja ! bj for all a; b. (b) Let f .x/ D sin.x C a/ ! sin x. Use part (a) to show that the graph of f .x/ lies between the horizontal lines y D ˙a. (c) Plot f .x/ and the lines y D ˙a to verify (b) for a D 0:5 and a D 0:2. SOLUTION (a) Let f .x/ D sin x, so that f 0 .x/ D cos x, and jf 0 .x/j " 1 for all x. From Exercise 67, we get: jsin a ! sin bj " ja ! bj: (b) Let f .x/ D sin.x C a/ ! sin.x/. Applying (a), we get the inequality: jf .x/j D jsin.x C a/ ! sin.x/j " j.x C a ! x/j D jaj: This is equivalent, by definition, to the two inequalities: !a " sin.x C a/ ! sin.x/ " a: (c) The plots of y D sin.x C 0:5/ ! sin.x/ and of y D sin.x C 0:2/ ! sin.x/ are shown below. The inequality is satisfied in both plots. y y 0.2 0.5 0.1 0.25 −4 −2 −0.25 −0.5 x 2 4 −4 −2 − 0.1 −0.2 x 2 4
© Copyright 2026 Paperzz