S3 Table

S3 Table: Table of Mathematical Reaction Equations
Table S3: Kinetic Model Reaction Equations
Reaction
Reaction Equation
PTS
vP T S =
P T S ∗glcD∗ pep
vmax
pyr
pep
pep
g6pn
Ka1 + Ka2 ∗
+(Ka3 ∗glcD)+ glcD∗
∗ 1+
pyr
pyr
Kg6p
PGMT
vP GM T =
PGI
vP GI =
P GM T ∗ g6p− g1p ∗
1
vmax
Keq 1+ accoa + succoa + coa
Kiaccoa
Kisuccoa
Kicoa
g1p
Kg6p ∗ 1+
+ g6p∗ 1+ accoa
Kg1p
Kiaccoa
A=
f 6p
Kf 6p ∗ 1+
K
6pgc
6pginhf 6p
+
[3]

6pgc
+g6p
K6pginhg6p 
B =1+
Kadp
+
a
vF BA =
Kf dp +f dp+
vT P I =
[2]


P F K ∗atp∗f 6p
vmax


adp
L
n
∗
atp+ Katps ∗ 1+
∗ f 6p+ Kf 6p ∗ A
1+
Kadp
s B
B
c
1+f 6p∗
Kf 6p ∗A
s
1 + Kpep
+ Kadp + Kamp
pep
ampb
adpb
amp
adp
vP F K =
PFK
TPI
!!
P GI ∗ g6p− f 6p
vmax
Keq



K

 g6p ∗1+
FBA
[1]

[4]



Kampa
F BA ∗ f dp− g3p∗dhap
vmax
Keq
! Kdhap ∗g3p
Kg3p ∗dhap
f dp∗g3p
g3p∗dhap
+
+
+
Keq ∗vblf
Keq ∗vblf
Kinh
Keq ∗vblf
g3p
T P I ∗ dhap− g3p
vmax
Keq
g3p
Kdhap ∗ 1+
+dhap
Kg3p
[5]
[6]
GAPD
vGAP D =
GAP D ∗ g3p∗nad− 13dpg∗nadh
vmax
Keq
13dpg
Kg3p ∗ 1+
+g3p ∗ Knad ∗ 1+ nadh
+nad
Kpgp
Knadh
PGK
vP GK =
P GK ∗ adp∗13dpg− atp∗3pg
vmax
Keq
atp
3pg
Kadp ∗ 1+
+adp ∗ K13dpg ∗ 1+
+13dpg
Katp
K3pg
PGM
vP GM =
f wd
3pg
rev ∗ 2pg )
(vmax ∗
)−(vmax
K3pg
K2pg
2pg
3pg
1+
+
K2pg
K3pg
[9]
ENO
vEN O =
EN O ∗ 2pg− pep
vmax
Keq
pep
K2pg ∗ 1+
+2pg
Kpep
[10]
PYK
vP Y K =
(n−1)
pep
+1
∗adp
Kpep



n
atp
n
1+



 Katp
pep

 +
∗ adp+K
Kpep ∗
+1
adp
L∗ f dp


amp
Kpep
+
+1
Kf dp
Kamp
P Y K ∗pep∗
vmax
[7]
[8]

1
∗ pyr ∗ nad ∗ coa
Kpyr Knad Kcoa
1+Ki∗ nadh
nad
pyr
glx
1+
+
∗ 1+ nad + nadh
∗ 1+ coa + accoa
Kpyr
Kiglx
Knad
Knadh
Kcoa
Kaccoa
[11]

P DH ∗
vmax
PDH
vP DH =
1
[12]
Table S3 ... continued: Kinetic Model Reaction Equations
Reaction
Reaction Equation
vpep ∗pep
Kapep
pep
1+
Kapep
1+
P T Arf wd
atp
nadh
1+
+
Kinadhf
Kiatpf
vP T Ar =
∗
1+
P T Arrev =
!
−
[13]
!
PTAr
P T Arf wd =
vpyr ∗pyr
Kapyr
pyr
1+
Kapyr
1+
∗
P T Arrev
nadh + atp + pep + pyr
Kinadh
Kiatp
Kipep
Kipyr
Haccoa
f
pi
accoa
vmax ∗
∗
Kaccoa
Kpi
Haccoa
Haccoa
pi
pi
accoa
accoa
+
∗
+
1+
Kaccoa
Kpi
Kaccoa
Kpi
Hcoa
actp
r
coa
vmax
∗
∗
Kcoa
Kactp
Hcoa
Hcoa
actp
actp
coa
coa
+
+
∗
1+
Kcoa
Kactp
Kcoa
Kactp
f wd
rev
vACKr = vACKr
− vACKr
ACKr
ACS
[14]
f wd
vACKr
=
f
atp∗ac
vmax ∗
α∗Katp ∗Kac
atp
atp∗ac
ac∗actp
atp∗ac∗actp
actp
atp∗actp
ac
1+
+
+
+
+
+
+
Katp
Kac
Kiactp
α∗Katp ∗Kac
Katp ∗Kiactp
Kac ∗Kiactp
α∗Katp ∗Kac ∗Kiactp
rev
vACKr
=
r
vmax
∗adp∗actp
Kiadp ∗Kactp +Kadp ∗actp+Kactp ∗adp+adp∗actp
vACS = 0
vCS =
[15]
K
accoa
oaa
H
∗
∗
vmax ∗ 1+ Hd1 +
H
KHd2
Kmaccoa Kmoaa
Kdaccoa
oaa
accoa
accoa
oaa
+
∗Inh1 +
∗Inh2 +
∗
∗Inh3
Kmaccoa
Kmoaa
Kmaccoa
Kmaccoa Kmoaa
Inh1 = 1 +
KHd1
H
+ (KH
Inh2 = 1 +
KHd1
H
+
H
KHd2
+
akg
Ki1akg
+
nadh
Ki1nadh
Inh3 = 1 +
KHd1
H
+
H
KHd2
+
akg
Ki2akg
+
nadh
Ki2nadh
CS
∗ (1 +
Hd2
atp
Kiatp
[16]
))
Assuming fixed pH = 7.0 ⇒ H = 10−1∗pH
ACONTa
vACON T a = vACON T b
ACONTb
vACON T b =
vICDH =
ICDHyr
[17]
f wd
vmax ∗citnf
nf
K
+citnf
df
!
−
rev ∗icitnr
vmax
K nr +icitnr
dr
nadp
ICDH ∗
icit
vmax
∗
Kmicit Kmnadp
1+
nadp
nadp
icit
+
∗
Kmnadp
Kmicit Kmnadp
[18]
∗ ICDHAllostInh
[19]
n
icit
Kmicit
n n
pep
icit
+ 1+
Kipep
Kmicit
1+
ICDHAllostInh =
ICL
L∗ 1+
vICL = 0
vAKGDH =
[20]
AKGDH ∗akg∗coa∗nad∗AKGDH
vmax
Inhib
Kakg ∗coa∗nad +(akg∗coa∗nad)+
(Knad ∗akg∗coa)+(Kcoa ∗akg∗nad)+
akg ∗Kz ∗succoa∗nadh
Kisuccoa
K
AKGDH
Kcoa ∗akg∗nad∗succoa
Kisuccoa
AKGDHInhib =
1+
+
+
Knad ∗akg∗coa∗nadh
Kinadh
+
akg ∗Kz ∗akg∗succoa∗nadh
Kiakg ∗Kisuccoa
K
1
glx
Kiglx
2
[21]
Table S3 ... continued: Kinetic Model Reaction Equations
Reaction
Reaction Equation
f wd
rev
vSU COAS = vSU
COAS − vSU COAS
SUCOAS
f wd
vSU
COAS =
[22]
f
vmax ∗adp∗succoa∗pi
(Kadp ∗Ksuccoa ∗Kpi )+(adp∗Ksuccoa ∗Kpi )+(adp∗succoa∗Kpi )+
(adp ∗ Ksuccoa ∗ pi) + (Kadp ∗ succoa ∗ pi) + (adp ∗ succoa ∗ pi)
vr
∗atp∗coa∗succ
rev
max
vSU
COAS = (Katp ∗Kcoa ∗Ksucc )+(atp∗Kcoa ∗Ksucc )+(atp∗coa∗Ksucc )+
(atp ∗ Kcoa ∗ succ) + (Katp ∗ coa ∗ succ) + (atp ∗ coa ∗ succ)
SUCDi
SD ∗ succ
vmax
Ksucc
1+ succ
Ksucc
vSU CDi =
FUM
vF U M =
MDH
vM DH =
f wd
f um
rev ∗ mal
vmax ∗
− vmax
Kf um
Kmal
f um
1+ mal +
Kmal
Kf um
f wd
mal
nad
v
∗
∗
M DH Kmnad Kmmal
nad
nad∗mal
1+
+
Kmnad
Kmnad ∗Kmmal
PPC
vmax−app
∗pepn1
vP P C =
PPC
[23]
!
−
rev
vM
DH ∗
nadh
oaa
∗
Kmnadh Kmoaa
nadh
nadh∗oaa
1+
+
Kmnadh
Kmnadh ∗Kmoaa
!
[25]
[26]
Kmn1
+pepn1
pep−app2


b∗f dp
a∗accoa∗b∗f dp∗e
1+ a∗accoa +
+
Kaaccoa
Kaf dp
Kaaccoa ∗Kaf dp

f dp
accoa∗f dp
1+ accoa +
+
Kaaccoa
Kaf dp
Kaaccoa ∗Kaf dp
PPC
PPC
vmax−app
= vmax
∗

Kmpep−app1 = Kmpep
1+
∗
f dp
accoa∗f dp∗e
accoa
+
+
c∗Kaaccoa
d∗Kaf dp
c∗Kaaccoa ∗d∗Kaf dp
f dp
accoa∗f dp
1+ accoa +
+
Kaaccoa
Kaf dp
Kaaccoa ∗Kaf dp
Kmpep−app2 = Kmpep−app1 ∗ 1 +
vP P CK =
PPCK
[24]
mal
Kimal
P P CK ∗oaa∗atp
vmax
atp
ME1

Ki
∗Km
oaa
atp
(Kiatp ∗Kmoaa ∗atp)+(Kmatp ∗oaa)+(oaa∗atp)+
Ki
pep
Ki
Ki
atp ∗Kmoaa ∗adp
atp ∗Kmoaa ∗pep∗adp
+
+
Kiadp
∗Kiadp
Ki
KiKmpep
atp ∗Kmoaa ∗atp∗pep
atp ∗Kmoaa ∗oaa∗adp
+
Kipep ∗KI
Ki
∗KIoaa
vM E1 = InhM E1 ∗

∗pep
[27]
+
adp
M E1 ∗nad∗maln1
vmax
Kinad ∗K n1
+(Knad ∗maln1 )+ K n1 ∗nad +(nad∗maln1 )
mal
mal
[28]
n2
1+ mal
Kmal
n2 n2
L∗ 1+ coa
+ 1+ mal
Ki
Kmal
InhM E1 =
MALS
vM ALS = 0
vG6P DH =
[29]
G6P DH ∗nadp∗g6p∗N onCompInh
vmax
g6pByN
ADP H ∗N onCompInhbyN ADH
Kinadp ∗Kg6p ∗CompInhnadpByN ADP H + Knadp ∗CompInhnadpByN ADP H ∗g6p +
(nadp ∗ Kg6p ) + (nadp ∗ g6p)
G6PDH
N onCompInhbyN ADH =
1+
CompInhnadpByN ADP H =
1
n
nadh
Kinadh
1+
N onCompInhg6pByN ADP H =
nadph
Kinadph−nadp
1+
1
nadph
Kinadph−g6p
3
[30]
Table S3 ... continued: Kinetic Model Reaction Equations
Reaction
Reaction Equation
GND
vGN D =
RPE
RP E
vRP E = vmax
∗ ru5pD −
RPI
RP I
vRP I = vmax
∗ ru5pD −
TKT1
6pgc+K6pgc ∗ 1+
f dp
Kif dp
v GN D ∗6pgc∗nadp
max
atp
nadph
∗ 1+
∗ nadp+Knadp ∗ 1+
Kiatp
Kinadph
xu5pD
Keq
r5p
Keq
[31]
[32]
[33]
vT KT 1 =
T KT 1 ∗ r5p∗xu5pD− g3p∗s7p
vmax
K
eq
g3p
s7p
Kr5p ∗ 1+
+r5p ∗ Kxu5pD ∗ 1+
+xu5pD
Kg3p
Ks7p
[34]
TKT2
vT KT 2 =
T KT 2 ∗ e4p∗xu5pD− f 6p∗g3p
vmax
Keq
f 6p
g3p
Ke4p ∗ 1+
+e4p ∗ Kxu5pD ∗ 1+
+xu5pD
Kf 6p
Kg3p
[35]
TALA
vT ALA =
f wd
e4p∗f 6p
∗ g3p∗s7p−
Keq
T ALA
e4p
f 6p
Kg3p ∗ 1+
+g3p ∗ Ks7p ∗ 1+
+s7p
Ke4p
Kf 6p
v
4
[36]