S3 Table: Table of Mathematical Reaction Equations Table S3: Kinetic Model Reaction Equations Reaction Reaction Equation PTS vP T S = P T S ∗glcD∗ pep vmax pyr pep pep g6pn Ka1 + Ka2 ∗ +(Ka3 ∗glcD)+ glcD∗ ∗ 1+ pyr pyr Kg6p PGMT vP GM T = PGI vP GI = P GM T ∗ g6p− g1p ∗ 1 vmax Keq 1+ accoa + succoa + coa Kiaccoa Kisuccoa Kicoa g1p Kg6p ∗ 1+ + g6p∗ 1+ accoa Kg1p Kiaccoa A= f 6p Kf 6p ∗ 1+ K 6pgc 6pginhf 6p + [3] 6pgc +g6p K6pginhg6p B =1+ Kadp + a vF BA = Kf dp +f dp+ vT P I = [2] P F K ∗atp∗f 6p vmax adp L n ∗ atp+ Katps ∗ 1+ ∗ f 6p+ Kf 6p ∗ A 1+ Kadp s B B c 1+f 6p∗ Kf 6p ∗A s 1 + Kpep + Kadp + Kamp pep ampb adpb amp adp vP F K = PFK TPI !! P GI ∗ g6p− f 6p vmax Keq K g6p ∗1+ FBA [1] [4] Kampa F BA ∗ f dp− g3p∗dhap vmax Keq ! Kdhap ∗g3p Kg3p ∗dhap f dp∗g3p g3p∗dhap + + + Keq ∗vblf Keq ∗vblf Kinh Keq ∗vblf g3p T P I ∗ dhap− g3p vmax Keq g3p Kdhap ∗ 1+ +dhap Kg3p [5] [6] GAPD vGAP D = GAP D ∗ g3p∗nad− 13dpg∗nadh vmax Keq 13dpg Kg3p ∗ 1+ +g3p ∗ Knad ∗ 1+ nadh +nad Kpgp Knadh PGK vP GK = P GK ∗ adp∗13dpg− atp∗3pg vmax Keq atp 3pg Kadp ∗ 1+ +adp ∗ K13dpg ∗ 1+ +13dpg Katp K3pg PGM vP GM = f wd 3pg rev ∗ 2pg ) (vmax ∗ )−(vmax K3pg K2pg 2pg 3pg 1+ + K2pg K3pg [9] ENO vEN O = EN O ∗ 2pg− pep vmax Keq pep K2pg ∗ 1+ +2pg Kpep [10] PYK vP Y K = (n−1) pep +1 ∗adp Kpep n atp n 1+ Katp pep + ∗ adp+K Kpep ∗ +1 adp L∗ f dp amp Kpep + +1 Kf dp Kamp P Y K ∗pep∗ vmax [7] [8] 1 ∗ pyr ∗ nad ∗ coa Kpyr Knad Kcoa 1+Ki∗ nadh nad pyr glx 1+ + ∗ 1+ nad + nadh ∗ 1+ coa + accoa Kpyr Kiglx Knad Knadh Kcoa Kaccoa [11] P DH ∗ vmax PDH vP DH = 1 [12] Table S3 ... continued: Kinetic Model Reaction Equations Reaction Reaction Equation vpep ∗pep Kapep pep 1+ Kapep 1+ P T Arf wd atp nadh 1+ + Kinadhf Kiatpf vP T Ar = ∗ 1+ P T Arrev = ! − [13] ! PTAr P T Arf wd = vpyr ∗pyr Kapyr pyr 1+ Kapyr 1+ ∗ P T Arrev nadh + atp + pep + pyr Kinadh Kiatp Kipep Kipyr Haccoa f pi accoa vmax ∗ ∗ Kaccoa Kpi Haccoa Haccoa pi pi accoa accoa + ∗ + 1+ Kaccoa Kpi Kaccoa Kpi Hcoa actp r coa vmax ∗ ∗ Kcoa Kactp Hcoa Hcoa actp actp coa coa + + ∗ 1+ Kcoa Kactp Kcoa Kactp f wd rev vACKr = vACKr − vACKr ACKr ACS [14] f wd vACKr = f atp∗ac vmax ∗ α∗Katp ∗Kac atp atp∗ac ac∗actp atp∗ac∗actp actp atp∗actp ac 1+ + + + + + + Katp Kac Kiactp α∗Katp ∗Kac Katp ∗Kiactp Kac ∗Kiactp α∗Katp ∗Kac ∗Kiactp rev vACKr = r vmax ∗adp∗actp Kiadp ∗Kactp +Kadp ∗actp+Kactp ∗adp+adp∗actp vACS = 0 vCS = [15] K accoa oaa H ∗ ∗ vmax ∗ 1+ Hd1 + H KHd2 Kmaccoa Kmoaa Kdaccoa oaa accoa accoa oaa + ∗Inh1 + ∗Inh2 + ∗ ∗Inh3 Kmaccoa Kmoaa Kmaccoa Kmaccoa Kmoaa Inh1 = 1 + KHd1 H + (KH Inh2 = 1 + KHd1 H + H KHd2 + akg Ki1akg + nadh Ki1nadh Inh3 = 1 + KHd1 H + H KHd2 + akg Ki2akg + nadh Ki2nadh CS ∗ (1 + Hd2 atp Kiatp [16] )) Assuming fixed pH = 7.0 ⇒ H = 10−1∗pH ACONTa vACON T a = vACON T b ACONTb vACON T b = vICDH = ICDHyr [17] f wd vmax ∗citnf nf K +citnf df ! − rev ∗icitnr vmax K nr +icitnr dr nadp ICDH ∗ icit vmax ∗ Kmicit Kmnadp 1+ nadp nadp icit + ∗ Kmnadp Kmicit Kmnadp [18] ∗ ICDHAllostInh [19] n icit Kmicit n n pep icit + 1+ Kipep Kmicit 1+ ICDHAllostInh = ICL L∗ 1+ vICL = 0 vAKGDH = [20] AKGDH ∗akg∗coa∗nad∗AKGDH vmax Inhib Kakg ∗coa∗nad +(akg∗coa∗nad)+ (Knad ∗akg∗coa)+(Kcoa ∗akg∗nad)+ akg ∗Kz ∗succoa∗nadh Kisuccoa K AKGDH Kcoa ∗akg∗nad∗succoa Kisuccoa AKGDHInhib = 1+ + + Knad ∗akg∗coa∗nadh Kinadh + akg ∗Kz ∗akg∗succoa∗nadh Kiakg ∗Kisuccoa K 1 glx Kiglx 2 [21] Table S3 ... continued: Kinetic Model Reaction Equations Reaction Reaction Equation f wd rev vSU COAS = vSU COAS − vSU COAS SUCOAS f wd vSU COAS = [22] f vmax ∗adp∗succoa∗pi (Kadp ∗Ksuccoa ∗Kpi )+(adp∗Ksuccoa ∗Kpi )+(adp∗succoa∗Kpi )+ (adp ∗ Ksuccoa ∗ pi) + (Kadp ∗ succoa ∗ pi) + (adp ∗ succoa ∗ pi) vr ∗atp∗coa∗succ rev max vSU COAS = (Katp ∗Kcoa ∗Ksucc )+(atp∗Kcoa ∗Ksucc )+(atp∗coa∗Ksucc )+ (atp ∗ Kcoa ∗ succ) + (Katp ∗ coa ∗ succ) + (atp ∗ coa ∗ succ) SUCDi SD ∗ succ vmax Ksucc 1+ succ Ksucc vSU CDi = FUM vF U M = MDH vM DH = f wd f um rev ∗ mal vmax ∗ − vmax Kf um Kmal f um 1+ mal + Kmal Kf um f wd mal nad v ∗ ∗ M DH Kmnad Kmmal nad nad∗mal 1+ + Kmnad Kmnad ∗Kmmal PPC vmax−app ∗pepn1 vP P C = PPC [23] ! − rev vM DH ∗ nadh oaa ∗ Kmnadh Kmoaa nadh nadh∗oaa 1+ + Kmnadh Kmnadh ∗Kmoaa ! [25] [26] Kmn1 +pepn1 pep−app2 b∗f dp a∗accoa∗b∗f dp∗e 1+ a∗accoa + + Kaaccoa Kaf dp Kaaccoa ∗Kaf dp f dp accoa∗f dp 1+ accoa + + Kaaccoa Kaf dp Kaaccoa ∗Kaf dp PPC PPC vmax−app = vmax ∗ Kmpep−app1 = Kmpep 1+ ∗ f dp accoa∗f dp∗e accoa + + c∗Kaaccoa d∗Kaf dp c∗Kaaccoa ∗d∗Kaf dp f dp accoa∗f dp 1+ accoa + + Kaaccoa Kaf dp Kaaccoa ∗Kaf dp Kmpep−app2 = Kmpep−app1 ∗ 1 + vP P CK = PPCK [24] mal Kimal P P CK ∗oaa∗atp vmax atp ME1 Ki ∗Km oaa atp (Kiatp ∗Kmoaa ∗atp)+(Kmatp ∗oaa)+(oaa∗atp)+ Ki pep Ki Ki atp ∗Kmoaa ∗adp atp ∗Kmoaa ∗pep∗adp + + Kiadp ∗Kiadp Ki KiKmpep atp ∗Kmoaa ∗atp∗pep atp ∗Kmoaa ∗oaa∗adp + Kipep ∗KI Ki ∗KIoaa vM E1 = InhM E1 ∗ ∗pep [27] + adp M E1 ∗nad∗maln1 vmax Kinad ∗K n1 +(Knad ∗maln1 )+ K n1 ∗nad +(nad∗maln1 ) mal mal [28] n2 1+ mal Kmal n2 n2 L∗ 1+ coa + 1+ mal Ki Kmal InhM E1 = MALS vM ALS = 0 vG6P DH = [29] G6P DH ∗nadp∗g6p∗N onCompInh vmax g6pByN ADP H ∗N onCompInhbyN ADH Kinadp ∗Kg6p ∗CompInhnadpByN ADP H + Knadp ∗CompInhnadpByN ADP H ∗g6p + (nadp ∗ Kg6p ) + (nadp ∗ g6p) G6PDH N onCompInhbyN ADH = 1+ CompInhnadpByN ADP H = 1 n nadh Kinadh 1+ N onCompInhg6pByN ADP H = nadph Kinadph−nadp 1+ 1 nadph Kinadph−g6p 3 [30] Table S3 ... continued: Kinetic Model Reaction Equations Reaction Reaction Equation GND vGN D = RPE RP E vRP E = vmax ∗ ru5pD − RPI RP I vRP I = vmax ∗ ru5pD − TKT1 6pgc+K6pgc ∗ 1+ f dp Kif dp v GN D ∗6pgc∗nadp max atp nadph ∗ 1+ ∗ nadp+Knadp ∗ 1+ Kiatp Kinadph xu5pD Keq r5p Keq [31] [32] [33] vT KT 1 = T KT 1 ∗ r5p∗xu5pD− g3p∗s7p vmax K eq g3p s7p Kr5p ∗ 1+ +r5p ∗ Kxu5pD ∗ 1+ +xu5pD Kg3p Ks7p [34] TKT2 vT KT 2 = T KT 2 ∗ e4p∗xu5pD− f 6p∗g3p vmax Keq f 6p g3p Ke4p ∗ 1+ +e4p ∗ Kxu5pD ∗ 1+ +xu5pD Kf 6p Kg3p [35] TALA vT ALA = f wd e4p∗f 6p ∗ g3p∗s7p− Keq T ALA e4p f 6p Kg3p ∗ 1+ +g3p ∗ Ks7p ∗ 1+ +s7p Ke4p Kf 6p v 4 [36]
© Copyright 2025 Paperzz