Station 1 The rectangle below has an area of at least 30 units. Write the inequality, solve for x, and graph the inequality. 4x - 2 5 Station 1 key ๐(๐๐ โ ๐) โฅ ๐๐ ๐๐๐ โ ๐๐ โฅ ๐๐ ๐๐๐ โฅ ๐๐ ๐โฅ๐ โ5 โ4 โ3 โ2 โ1 0 1 2 3 4 5 Station 2 Which of the following is NOT in the solution set to the inequality below? ๐ ๐ โ ๐ < โ๐ ๐ A) -2 B) โ๐ ๐ C) โ๐ ๐ D) โ๐๐ ๐ Station 2 key ๐ ๐ โ ๐ < โ๐ ๐ ๐ ๐ < โ๐ ๐ ๐๐ < โ๐ โ๐ ๐< ๐ Since the solution set includes all values of x that are less than that is NOT in the solution set because โ๐ ๐ is โ๐ ๐ , C is the only answer NOT less than โ๐ ๐ . Station 3 Which inequalities have NO SOLUTION or ALL REAL NUMBERS as their answer? (try them all) A) ๐(๐ โ ๐) + ๐๐ > ๐๐ + ๐ D) ๐๐๐ โ ๐ > ๐(๐๐ + ๐) B) โ ๐ + ๐(๐ + ๐) < ๐๐ โ ๐ E) ๐๐ + ๐ > ๐(๐๐ โ ๐) โ ๐ C) ๐(๐ + ๐) โ ๐ < ๐๐ + ๐(๐ + ๐) Station 3 key ANSWER: A and D are no solution; C and E are all real numbers A) 4(๐ฅ โ 3) + 2๐ฅ > 6๐ฅ + 1 โ12 > 1 -12 is not greater than 1 so this is false B) โ ๐ฅ + 4(๐ฅ + 2) < 4๐ฅ โ 2 โ ๐ฅ + 4๐ฅ + 8 < 4๐ฅ โ 2 3๐ฅ + 8 < 4๐ฅ โ 2 this will have a solution C) 5(๐ฅ + 1) โ 6 < 3๐ฅ + 2(๐ฅ + 4) 5๐ฅ + 5 โ 6 < 3๐ฅ + 2๐ฅ + 8 โ1 < 8 this is a true statement because -6 is less than 8 D) 10๐ฅ โ 7 > 5(2๐ฅ + 4) โ7 > 20 this is a false statement because -7 is not greater than 20 E) 6๐ฅ + 1 > 2(3๐ฅ โ 4) โ 5 6๐ฅ + 1 > 6๐ฅ โ 8 โ 5 1 > โ13 this is a true statement because 1 is greater than -13 Station 4 Write, solve, and graph the following compound inequality: Twice the quantity of the sum of a number and four is at most fourteen OR three times a number is at least twelve. Station 4 key Twice the quantity of the sum of a number and four is at most fourteen. 2(๐ + 4) โค 14 2๐ + 8 โค 14 2๐ โค 6 ๐โค3 OR three times a number is at least twelve 3๐ โฅ 12 ๐โฅ4 ๐ โค 3 ๐๐ ๐ โฅ 4 โ5 โ4 โ3 โ2 โ1 0 1 2 3 4 5 Station 5 Describe the error(s) in the following problem, then solve and graph correctly: ๐ < โ๐๐ + ๐ < ๐ ๐ < โ๐๐ < ๐ โ๐ > ๐ > โ๐ โ๐ < ๐ < โ๐ โ5 โ4 โ3 โ2 โ1 0 1 2 3 4 5 Station 5 key 1) 3 was subtracted from the 9 but not the 4 2) Closed circles were used instead of open circles ๐ < โ๐๐ + ๐ < ๐ ๐ < โ๐๐ < ๐ โ๐ > ๐ > โ๐ ๐ โ๐ < ๐ < โ โ5 โ4 โ3 โ2 โ1 0 1 ๐ ๐ 2 3 4 5 Station 6 Rewrite the equations so that y is a function of x: 1. ๐๐ + ๐๐ = โ๐ ๐ 2. ๐ ๐ โ ๐๐ = ๐ ๐ 3. โ๐ + ๐ ๐ = โ๐ 4. โ๐๐ โ ๐๐ = ๐ Station 6 key 1. ๐๐ + ๐๐ = โ๐ ๐๐ = โ๐๐ โ ๐ ๐ ๐=โ ๐โ๐ ๐ 2. ๐ ๐ ๐ โ ๐๐ = ๐ ๐ โ๐๐ = โ ๐ + ๐ ๐ ๐ ๐= ๐โ๐ ๐ ๐ 3. โ๐ + ๐ ๐ = โ๐ ๐ ๐=๐โ๐ ๐ ๐ = ๐๐ โ ๐๐ 4. โ๐๐ โ ๐๐ = ๐ โ๐๐ = ๐๐ ๐ = โ๐๐ Station 7 Solve the equations for the given variables. ๐จ๐ + ๐๐ = ๐๐ โ ๐, ๐๐๐๐๐ ๐๐๐ ๐ ๐ฎ๐ฏ = ๐ถ๐บ โ ๐ป, ๐๐๐๐๐ ๐๐๐ ๐ถ ๐๐ โ ๐๐ = ๐ , ๐๐๐๐๐ ๐๐๐ ๐ ๐(๐ โ ๐) โ ๐ = ๐ ๐, ๐๐๐๐๐ ๐๐๐ ๐ Station 7 key ๐จ๐ + ๐๐ = ๐๐ โ ๐ , ๐๐๐๐๐ ๐๐๐ ๐ ๐๐ โ ๐๐ = ๐ , ๐๐๐๐๐ ๐๐๐ ๐ ๐๐ = โ๐จ๐ + ๐๐ โ ๐ โ๐๐ = ๐ โ ๐๐ ๐= โ๐จ๐ + ๐๐ โ ๐ ๐ ๐= ๐ โ ๐๐ โ๐ ๐(๐ โ ๐) โ ๐ = ๐ ๐ , ๐๐๐๐๐ ๐๐๐ ๐ ๐ฎ๐ฏ = ๐ถ๐บ โ ๐ป , ๐๐๐๐๐ ๐๐๐ ๐ถ ๐ฎ๐ฏ + ๐ป = ๐ถ๐บ ๐ฎ๐ฏ + ๐ป =๐ถ ๐บ ๐(๐ โ ๐) = ๐ ๐ + ๐ ๐โ๐= ๐ ๐ + ๐ ๐ ๐ ๐ + ๐ โ๐ = โ๐ ๐ ๐=โ ๐ ๐ + ๐ +๐ ๐ Station 8 1. What is the slope of the line through (1,3) and (4,-1) 2. A line has a slope of โ๐ ๐ . Though which two points could this line pass? a) (12,13) (17,10) b) (0,7) (3,10) c) (16,15) (13,10) d) (11, 13) (8,18) 3. A train traveling at a constant rate is 120 km from its destination at 1:00 pm. The train is 88 km from its destination at 1:24 pm. Determine the rate of change. Station 8 Key 1. โ๐ ๐ 2. (11, 13) (8,18) ๐ 3. ๐ km per minute
© Copyright 2026 Paperzz