ExamView - ch. 9 practice test.tst - Parkway C-2

Name: ________________________ Class: ___________________ Date: __________
ID: A
Ch. 9 Practice Test
____
____
____
____
1. Which of the following transformations represents an isometry?
a.
c.
b.
d.
2. An ISOMETRY is a transformation which does not have to preserve ________.
a. position
c. length
b. betweenness
d. angle measure
3. The rule for this transformation of ABC onto A′B ′C ′ is _________ .
a. (x, y)→(x – 9, y – 2)
c. (x, y)→ (x – 9, y + 2)
b. (x, y) → (x + 9, y + 2)
d. (x, y) → (x + 9, y – 2)
4. The point A(–7, 3) is translated onto A′ by the vector uç = 〈5, − 4〉. The coordinates of A′ are _______.
a. (–2, –1)
b. (–12, 7)
c. (2, –7)
d. (5, –4)
1
Name: ________________________
____
____
____
5.
ID: A
What are the coordinates of the vertices when the figure is reflected in line m?
a. W ′ (4, –3), X ′ (–2, –1), Y ′ (–5, –1)
b. W ′ (4, 3), X ′ (2, –1), Y ′ (–5, 1)
c. W ′ (0, –3), X ′ (–2, 1), Y ′ (–9, –1)
d. W ′ (–3, 0), X ′ (1, –2), Y ′ (–1, –9)
6. A reflection is always ________.
a. a rotation
b. a translation
c.
d.
an isometry
reflexive
←
→
4
7. The graph of MN below represents the equation y = x + 4.
3
←

→
If MN is reflected over the x-axis, what would be the new value of y when x = 0?
a. –3
b. –4
c. 4
d. 3
2
Name: ________________________
ID: A
____
8. The change in position from the solid figure to the dotted figure is best described as a ______.
____
a. transmission
c.
b. reflection
d.
9. Use the graph below to complete the sentence.
rotation
translation
Figure A′B ′C ′D ′ is the image of figure ABCD under a rotation _______
a. 180° about the origin.
b. 90° counterclockwise about the origin.
c. 270° counterclockwise about the origin.
d. 270° clockwise about the origin.
3
Name: ________________________
ID: A
←

→
____ 10. The graph of MN below represents the equation y =
4
x + 4.
3
←

→
If MN is rotated counterclockwise 270° around the origin, what will be the new coordinates of point N?
a. ÊÁË 0, 3 ˆ˜¯
b. ÊÁË 0, − 3 ˆ˜¯
c. ÊÁË 3, 0 ˆ˜¯
d. ÊÁË −3, 0 ˆ˜¯
4
Name: ________________________
ID: A
____ 11. The transformation ÊÁË x, y ˜ˆ¯ → ÁÊË −x, − y ˜ˆ¯ is applied to the figure below. Identify the image of the figure
under this transformation.
a.
c.
b.
d.
5
Name: ________________________
ID: A
____ 12. Which glide reflection could map triangle ABC to triangle A′B ′C ′?
a.
b.
Translation: ÊÁË x, y ˆ˜¯ →
Reflection: in x = − 1
Translation: ÁÊË x, y ˜ˆ¯ →
ÊÁ x, y + 3 ˆ˜
Ë
¯
c.
ÁÊ x + 1, y + 3 ˜ˆ
Ë
¯
d.
Translation: ÊÁË x, y ˆ˜¯ →
Reflection: in y = − 1
Translation: ÁÊË x, y ˜ˆ¯ →
ÊÁ x + 3, y ˆ˜
Ë
¯
ÁÊ x + 3, y + 1 ˜ˆ
Ë
¯
Reflection: in x = − 1
Reflection: in y = − 1
____ 13. Which of the following shows the image of ABC after the glide reflection described?
Translation: ÊÁË x, y ˆ˜¯ → ÊÁË x, y − 3 ˆ˜¯ ; Reflection: in x = 1
a.
c.
b.
d.
6
Name: ________________________
____ 14. Which of the following shows the image of
Translation: ÊÁË x, y ˆ˜¯ → ÊÁË x − 7, y ˆ˜¯
ID: A
ABC after the glide reflection described?
Reflection: in y=3
a.
c.
b.
d.
____ 15. The composition of two (or more) isometries is always ______.
a. an isometry
c. a rotation
b. a translation
d. a reflection
7
Name: ________________________
ID: A
DEF with vertices D ÁÊË 0, 3˜ˆ¯ , E ÁÊË 4, 3 ˜ˆ¯ , and F ÁÊË 0, 7 ˜ˆ¯ . Then graph its image after the given
transformation.
Graph
____ 16. Rotate 180°. Then translate using ÊÁË x, y ˆ˜¯ → ÊÁË x − 1, y − 1 ˆ˜¯ .
a.
c.
b.
d.
____ 17. The hexagon shown below is equiangular. How many lines of symmetry does it have?
a. 2
b. 1
c. 3
d. 6
____ 18. Which of the following letters (if drawn as simply as possible) has at least one line of symmetry?
Q, S, T, Z
a. S
b. T
c. Q
d. Z
8
Name: ________________________
ID: A
____ 19. Which figure shows all lines of symmetry?
a.
c.
b.
d.
____ 20. Which figure has more than 1 line of symmetry?
a.
b.
c.
d.
____ 21. If a triangle has three lines of symmetry, then it is_________.
a. scalene
c. a right triangle
b. equilateral
d. isosceles
____ 22. Which of the following is NOT true?
a. A regular hexagon has rotational symmetry and always has line symmetry.
b. A triangle has rotational symmetry and always has line symmetry.
c. A rectangle has rotational symmetry and always has line symmetry.
d. A parallelogram has rotational symmetry and may have line symmetry.
9
Name: ________________________
ID: A
____ 23. Which figure has rotational symmetry for an angle of rotation of 240°?
c.
a.
b.
d.
____ 24. The line shown in the figure below is the only line of symmetry for a hexagon. The figure shows three of
the hexagon's vertices.
What are the coordinates of the other three vertices of the hexagon?
a.
b.
ÊÁ 7,
Ë
ÊÁ 7,
Ë
3 ˆ˜¯ , ÊÁË 6, − 2 ˆ˜¯ , ÊÁË 0, − 3 ˆ˜¯
3 ˆ˜¯ , ÊÁË 6, − 2 ˆ˜¯ , ÊÁË −1, − 2ˆ˜¯
c.
d.
10
ÊÁ 7,
Ë
ÊÁ 3,
Ë
3 ˆ˜¯ , ÊÁË 7, − 1 ˆ˜¯ , ÊÁË 0,
7 ˆ˜¯ , ÊÁË −2, 6 ˆ˜¯ , ÊÁË −3,
− 2 ˆ˜¯
0 ˆ˜¯
Name: ________________________
ID: A
____ 25. Points A, B, and C are three points on a convex polygon that has rotational symmetry only for rotations of
90° or multiples of 90°. How many more vertices does the polygon have and what are their coordinates?
a.
b.
c.
d.
There is one more vertex, at ÊÁË 2, 3 ˆ˜¯ .
There are two more vertices, at ÊÁË 2, 1 ˆ˜¯ and at ÊÁË 1,
There are two more vertices, at ÊÁË 2, 0 ˆ˜¯ and at ÊÁË 0,
There is one more vertex, at ÊÁË 2, 2 ˆ˜¯ .
2 ˆ˜¯ .
2 ˆ˜¯ .
____ 26. During ceramics class, Susan painted plates for her mother. Which design exhibits rotational symmetry?
a.
b.
c.
11
d.
ID: A
Ch. 9 Practice Test
Answer Section
1. ANS: C
PTS: 1
DIF: Level A
REF: PHGM0003
TOP: Lesson 9.1 Translate Figures and Use Vectors
KEY: identify | transformation |
isometry
BLM: Knowledge NOT: 978-0-618-65613-4
2. ANS: A
PTS: 1
DIF: Level A
REF: MLGE0332
TOP: Lesson 9.1 Translate Figures and Use Vectors
KEY: transformation | isometry
BLM: Knowledge NOT: 978-0-618-65613-4
3. ANS: C
PTS: 1
DIF: Level B
REF: MGEO0015
NAT: NCTM 9-12.GEO.3.a
TOP: Lesson 9.1 Translate Figures and Use Vectors
KEY: triangle | map | motion
BLM: Comprehension
NOT: 978-0-618-65613-4
4. ANS: A
PTS: 1
DIF: Level B
REF: MLGE0408
NAT: NCTM 9-12.GEO.2.a
TOP: Lesson 9.1 Translate Figures and Use Vectors
KEY: translate | vector | coordinate
BLM: Knowledge NOT: 978-0-618-65613-4
5. ANS: C
PTS: 1
DIF: Level B
REF: MHGM0140
TOP: Lesson 9.3 Perform Reflections
KEY: reflection
BLM: Knowledge
NOT: 978-0-618-65613-4
6. ANS: C
PTS: 1
DIF: Level A
REF: HLGM0524
TOP: Lesson 9.3 Perform Reflections
KEY: reflection | isometry
BLM: Knowledge NOT: 978-0-618-65613-4
7. ANS: B
PTS: 1
DIF: Level C
REF: MCT90036
NAT: NCTM 9-12.GEO.2.a
TOP: Lesson 9.3 Perform Reflections
KEY: line | graph | y-intercept
BLM: Synthesis
NOT: 978-0-618-65613-4
8. ANS: D
PTS: 1
DIF: Level A
REF: MLGE0331
TOP: Lesson 9.4 Perform Rotations
KEY: reflection | rotation | translation | transformation
BLM: Knowledge NOT: 978-0-618-65613-4
9. ANS: C
PTS: 1
DIF: Level B
REF: MLGE0404
TOP: Lesson 9.4 Perform Rotations
KEY: rotation
BLM: Knowledge
NOT: 978-0-618-65613-4
10. ANS: A
PTS: 1
DIF: Level C
REF: MC100304
NAT: NCTM 9-12.GEO.2.a
TOP: Lesson 9.4 Perform Rotations
KEY: graph | coordinate | rotation | transformation | turn
BLM: Synthesis
NOT: 978-0-618-65613-4
11. ANS: A
PTS: 1
DIF: Level B
REF: MCT90031
TOP: Lesson 9.4 Perform Rotations
KEY: coordinate | rotation | transformation
BLM: Application NOT: 978-0-618-65613-4
12. ANS: C
PTS: 1
DIF: Level B
REF: MGEO0035
TOP: Lesson 9.5 Apply Compositions of Transformations
KEY: glide reflection
BLM: Comprehension
NOT: 978-0-618-65613-4
13. ANS: D
PTS: 1
DIF: Level B
REF: MLGE0360
TOP: Lesson 9.5 Apply Compositions of Transformations
KEY: glide reflection
BLM: Knowledge NOT: 978-0-618-65613-4
14. ANS: C
PTS: 1
DIF: Level B
REF: MLGE0362
TOP: Lesson 9.5 Apply Compositions of Transformations
KEY: glide reflection
BLM: Knowledge NOT: 978-0-618-65613-4
15. ANS: A
PTS: 1
DIF: Level B
REF: HLGM0568
TOP: Lesson 9.5 Apply Compositions of Transformations
KEY: composition | isometry
BLM: Knowledge NOT: 978-0-618-65613-4
1
ID: A
16. ANS:
TOP:
BLM:
17. ANS:
TOP:
BLM:
18. ANS:
TOP:
BLM:
19. ANS:
TOP:
BLM:
20. ANS:
TOP:
BLM:
21. ANS:
TOP:
BLM:
22. ANS:
STA:
KEY:
NOT:
23. ANS:
STA:
KEY:
24. ANS:
TOP:
KEY:
BLM:
25. ANS:
STA:
KEY:
NOT:
26. ANS:
TOP:
BLM:
C
PTS: 1
DIF: Level B
REF: MGR80081
Lesson 9.5 Apply Compositions of Transformations
KEY: rotation | translation
Knowledge NOT: 978-0-618-65613-4
A
PTS: 1
DIF: Level A
REF: HLGM0525
Lesson 9.6 Identify Symmetry
KEY: line | symmetry | hexagon | equiangular
Knowledge NOT: 978-0-618-65613-4
B
PTS: 1
DIF: Level B
REF: MLGE0338
Lesson 9.6 Identify Symmetry
KEY: line | symmetry | letters
Knowledge NOT: 978-0-618-65613-4
C
PTS: 1
DIF: Level B
REF: MLP10253
Lesson 9.6 Identify Symmetry
KEY: line | symmetry
Knowledge NOT: 978-0-618-65613-4
B
PTS: 1
DIF: Level B
REF: MLGE0138
Lesson 9.6 Identify Symmetry
KEY: line | symmetry
Knowledge NOT: 978-0-618-65613-4
B
PTS: 1
DIF: Level B
REF: HLGM0335
Lesson 9.6 Identify Symmetry
KEY: line | symmetry | triangle | equilateral
Knowledge NOT: 978-0-618-65613-4
B
PTS: 1
DIF: Level B
REF: HLGM0539
MO 10.3.3.C.1
TOP: Lesson 9.6 Identify Symmetry
line | symmetry | triangle | rotational
BLM: Comprehension
978-0-618-65613-4
B
PTS: 1
DIF: Level B
REF: AXGM0163
MO 10.3.3.C.1
TOP: Lesson 9.6 Identify Symmetry
symmetry | reflection | rotation
BLM: Knowledge NOT: 978-0-618-65613-4
A
PTS: 1
DIF: Level B
REF: MC100232
Lesson 9.6 Identify Symmetry
line | graph | symmetry | coordinate | hexagon | symmetric | grid
Synthesis
NOT: 978-0-618-65613-4
A
PTS: 1
DIF: Level C
REF: MCT90038
MO 10.3.3.C.1
TOP: Lesson 9.6 Identify Symmetry
graph | polygon | rotational | convex | symmetric
BLM: Comprehension
978-0-618-65613-4
D
PTS: 1
DIF: Level B
REF: MLPA0742
Lesson 9.6 Identify Symmetry
KEY: symmetry | rotation | rotational
Application NOT: 978-0-618-65613-4
2