Name: ________________________ Class: ___________________ Date: __________ ID: A Ch. 9 Practice Test ____ ____ ____ ____ 1. Which of the following transformations represents an isometry? a. c. b. d. 2. An ISOMETRY is a transformation which does not have to preserve ________. a. position c. length b. betweenness d. angle measure 3. The rule for this transformation of ABC onto A′B ′C ′ is _________ . a. (x, y)→(x – 9, y – 2) c. (x, y)→ (x – 9, y + 2) b. (x, y) → (x + 9, y + 2) d. (x, y) → (x + 9, y – 2) 4. The point A(–7, 3) is translated onto A′ by the vector uç = 〈5, − 4〉. The coordinates of A′ are _______. a. (–2, –1) b. (–12, 7) c. (2, –7) d. (5, –4) 1 Name: ________________________ ____ ____ ____ 5. ID: A What are the coordinates of the vertices when the figure is reflected in line m? a. W ′ (4, –3), X ′ (–2, –1), Y ′ (–5, –1) b. W ′ (4, 3), X ′ (2, –1), Y ′ (–5, 1) c. W ′ (0, –3), X ′ (–2, 1), Y ′ (–9, –1) d. W ′ (–3, 0), X ′ (1, –2), Y ′ (–1, –9) 6. A reflection is always ________. a. a rotation b. a translation c. d. an isometry reflexive ← → 4 7. The graph of MN below represents the equation y = x + 4. 3 ← → If MN is reflected over the x-axis, what would be the new value of y when x = 0? a. –3 b. –4 c. 4 d. 3 2 Name: ________________________ ID: A ____ 8. The change in position from the solid figure to the dotted figure is best described as a ______. ____ a. transmission c. b. reflection d. 9. Use the graph below to complete the sentence. rotation translation Figure A′B ′C ′D ′ is the image of figure ABCD under a rotation _______ a. 180° about the origin. b. 90° counterclockwise about the origin. c. 270° counterclockwise about the origin. d. 270° clockwise about the origin. 3 Name: ________________________ ID: A ← → ____ 10. The graph of MN below represents the equation y = 4 x + 4. 3 ← → If MN is rotated counterclockwise 270° around the origin, what will be the new coordinates of point N? a. ÊÁË 0, 3 ˆ˜¯ b. ÊÁË 0, − 3 ˆ˜¯ c. ÊÁË 3, 0 ˆ˜¯ d. ÊÁË −3, 0 ˆ˜¯ 4 Name: ________________________ ID: A ____ 11. The transformation ÊÁË x, y ˜ˆ¯ → ÁÊË −x, − y ˜ˆ¯ is applied to the figure below. Identify the image of the figure under this transformation. a. c. b. d. 5 Name: ________________________ ID: A ____ 12. Which glide reflection could map triangle ABC to triangle A′B ′C ′? a. b. Translation: ÊÁË x, y ˆ˜¯ → Reflection: in x = − 1 Translation: ÁÊË x, y ˜ˆ¯ → ÊÁ x, y + 3 ˆ˜ Ë ¯ c. ÁÊ x + 1, y + 3 ˜ˆ Ë ¯ d. Translation: ÊÁË x, y ˆ˜¯ → Reflection: in y = − 1 Translation: ÁÊË x, y ˜ˆ¯ → ÊÁ x + 3, y ˆ˜ Ë ¯ ÁÊ x + 3, y + 1 ˜ˆ Ë ¯ Reflection: in x = − 1 Reflection: in y = − 1 ____ 13. Which of the following shows the image of ABC after the glide reflection described? Translation: ÊÁË x, y ˆ˜¯ → ÊÁË x, y − 3 ˆ˜¯ ; Reflection: in x = 1 a. c. b. d. 6 Name: ________________________ ____ 14. Which of the following shows the image of Translation: ÊÁË x, y ˆ˜¯ → ÊÁË x − 7, y ˆ˜¯ ID: A ABC after the glide reflection described? Reflection: in y=3 a. c. b. d. ____ 15. The composition of two (or more) isometries is always ______. a. an isometry c. a rotation b. a translation d. a reflection 7 Name: ________________________ ID: A DEF with vertices D ÁÊË 0, 3˜ˆ¯ , E ÁÊË 4, 3 ˜ˆ¯ , and F ÁÊË 0, 7 ˜ˆ¯ . Then graph its image after the given transformation. Graph ____ 16. Rotate 180°. Then translate using ÊÁË x, y ˆ˜¯ → ÊÁË x − 1, y − 1 ˆ˜¯ . a. c. b. d. ____ 17. The hexagon shown below is equiangular. How many lines of symmetry does it have? a. 2 b. 1 c. 3 d. 6 ____ 18. Which of the following letters (if drawn as simply as possible) has at least one line of symmetry? Q, S, T, Z a. S b. T c. Q d. Z 8 Name: ________________________ ID: A ____ 19. Which figure shows all lines of symmetry? a. c. b. d. ____ 20. Which figure has more than 1 line of symmetry? a. b. c. d. ____ 21. If a triangle has three lines of symmetry, then it is_________. a. scalene c. a right triangle b. equilateral d. isosceles ____ 22. Which of the following is NOT true? a. A regular hexagon has rotational symmetry and always has line symmetry. b. A triangle has rotational symmetry and always has line symmetry. c. A rectangle has rotational symmetry and always has line symmetry. d. A parallelogram has rotational symmetry and may have line symmetry. 9 Name: ________________________ ID: A ____ 23. Which figure has rotational symmetry for an angle of rotation of 240°? c. a. b. d. ____ 24. The line shown in the figure below is the only line of symmetry for a hexagon. The figure shows three of the hexagon's vertices. What are the coordinates of the other three vertices of the hexagon? a. b. ÊÁ 7, Ë ÊÁ 7, Ë 3 ˆ˜¯ , ÊÁË 6, − 2 ˆ˜¯ , ÊÁË 0, − 3 ˆ˜¯ 3 ˆ˜¯ , ÊÁË 6, − 2 ˆ˜¯ , ÊÁË −1, − 2ˆ˜¯ c. d. 10 ÊÁ 7, Ë ÊÁ 3, Ë 3 ˆ˜¯ , ÊÁË 7, − 1 ˆ˜¯ , ÊÁË 0, 7 ˆ˜¯ , ÊÁË −2, 6 ˆ˜¯ , ÊÁË −3, − 2 ˆ˜¯ 0 ˆ˜¯ Name: ________________________ ID: A ____ 25. Points A, B, and C are three points on a convex polygon that has rotational symmetry only for rotations of 90° or multiples of 90°. How many more vertices does the polygon have and what are their coordinates? a. b. c. d. There is one more vertex, at ÊÁË 2, 3 ˆ˜¯ . There are two more vertices, at ÊÁË 2, 1 ˆ˜¯ and at ÊÁË 1, There are two more vertices, at ÊÁË 2, 0 ˆ˜¯ and at ÊÁË 0, There is one more vertex, at ÊÁË 2, 2 ˆ˜¯ . 2 ˆ˜¯ . 2 ˆ˜¯ . ____ 26. During ceramics class, Susan painted plates for her mother. Which design exhibits rotational symmetry? a. b. c. 11 d. ID: A Ch. 9 Practice Test Answer Section 1. ANS: C PTS: 1 DIF: Level A REF: PHGM0003 TOP: Lesson 9.1 Translate Figures and Use Vectors KEY: identify | transformation | isometry BLM: Knowledge NOT: 978-0-618-65613-4 2. ANS: A PTS: 1 DIF: Level A REF: MLGE0332 TOP: Lesson 9.1 Translate Figures and Use Vectors KEY: transformation | isometry BLM: Knowledge NOT: 978-0-618-65613-4 3. ANS: C PTS: 1 DIF: Level B REF: MGEO0015 NAT: NCTM 9-12.GEO.3.a TOP: Lesson 9.1 Translate Figures and Use Vectors KEY: triangle | map | motion BLM: Comprehension NOT: 978-0-618-65613-4 4. ANS: A PTS: 1 DIF: Level B REF: MLGE0408 NAT: NCTM 9-12.GEO.2.a TOP: Lesson 9.1 Translate Figures and Use Vectors KEY: translate | vector | coordinate BLM: Knowledge NOT: 978-0-618-65613-4 5. ANS: C PTS: 1 DIF: Level B REF: MHGM0140 TOP: Lesson 9.3 Perform Reflections KEY: reflection BLM: Knowledge NOT: 978-0-618-65613-4 6. ANS: C PTS: 1 DIF: Level A REF: HLGM0524 TOP: Lesson 9.3 Perform Reflections KEY: reflection | isometry BLM: Knowledge NOT: 978-0-618-65613-4 7. ANS: B PTS: 1 DIF: Level C REF: MCT90036 NAT: NCTM 9-12.GEO.2.a TOP: Lesson 9.3 Perform Reflections KEY: line | graph | y-intercept BLM: Synthesis NOT: 978-0-618-65613-4 8. ANS: D PTS: 1 DIF: Level A REF: MLGE0331 TOP: Lesson 9.4 Perform Rotations KEY: reflection | rotation | translation | transformation BLM: Knowledge NOT: 978-0-618-65613-4 9. ANS: C PTS: 1 DIF: Level B REF: MLGE0404 TOP: Lesson 9.4 Perform Rotations KEY: rotation BLM: Knowledge NOT: 978-0-618-65613-4 10. ANS: A PTS: 1 DIF: Level C REF: MC100304 NAT: NCTM 9-12.GEO.2.a TOP: Lesson 9.4 Perform Rotations KEY: graph | coordinate | rotation | transformation | turn BLM: Synthesis NOT: 978-0-618-65613-4 11. ANS: A PTS: 1 DIF: Level B REF: MCT90031 TOP: Lesson 9.4 Perform Rotations KEY: coordinate | rotation | transformation BLM: Application NOT: 978-0-618-65613-4 12. ANS: C PTS: 1 DIF: Level B REF: MGEO0035 TOP: Lesson 9.5 Apply Compositions of Transformations KEY: glide reflection BLM: Comprehension NOT: 978-0-618-65613-4 13. ANS: D PTS: 1 DIF: Level B REF: MLGE0360 TOP: Lesson 9.5 Apply Compositions of Transformations KEY: glide reflection BLM: Knowledge NOT: 978-0-618-65613-4 14. ANS: C PTS: 1 DIF: Level B REF: MLGE0362 TOP: Lesson 9.5 Apply Compositions of Transformations KEY: glide reflection BLM: Knowledge NOT: 978-0-618-65613-4 15. ANS: A PTS: 1 DIF: Level B REF: HLGM0568 TOP: Lesson 9.5 Apply Compositions of Transformations KEY: composition | isometry BLM: Knowledge NOT: 978-0-618-65613-4 1 ID: A 16. ANS: TOP: BLM: 17. ANS: TOP: BLM: 18. ANS: TOP: BLM: 19. ANS: TOP: BLM: 20. ANS: TOP: BLM: 21. ANS: TOP: BLM: 22. ANS: STA: KEY: NOT: 23. ANS: STA: KEY: 24. ANS: TOP: KEY: BLM: 25. ANS: STA: KEY: NOT: 26. ANS: TOP: BLM: C PTS: 1 DIF: Level B REF: MGR80081 Lesson 9.5 Apply Compositions of Transformations KEY: rotation | translation Knowledge NOT: 978-0-618-65613-4 A PTS: 1 DIF: Level A REF: HLGM0525 Lesson 9.6 Identify Symmetry KEY: line | symmetry | hexagon | equiangular Knowledge NOT: 978-0-618-65613-4 B PTS: 1 DIF: Level B REF: MLGE0338 Lesson 9.6 Identify Symmetry KEY: line | symmetry | letters Knowledge NOT: 978-0-618-65613-4 C PTS: 1 DIF: Level B REF: MLP10253 Lesson 9.6 Identify Symmetry KEY: line | symmetry Knowledge NOT: 978-0-618-65613-4 B PTS: 1 DIF: Level B REF: MLGE0138 Lesson 9.6 Identify Symmetry KEY: line | symmetry Knowledge NOT: 978-0-618-65613-4 B PTS: 1 DIF: Level B REF: HLGM0335 Lesson 9.6 Identify Symmetry KEY: line | symmetry | triangle | equilateral Knowledge NOT: 978-0-618-65613-4 B PTS: 1 DIF: Level B REF: HLGM0539 MO 10.3.3.C.1 TOP: Lesson 9.6 Identify Symmetry line | symmetry | triangle | rotational BLM: Comprehension 978-0-618-65613-4 B PTS: 1 DIF: Level B REF: AXGM0163 MO 10.3.3.C.1 TOP: Lesson 9.6 Identify Symmetry symmetry | reflection | rotation BLM: Knowledge NOT: 978-0-618-65613-4 A PTS: 1 DIF: Level B REF: MC100232 Lesson 9.6 Identify Symmetry line | graph | symmetry | coordinate | hexagon | symmetric | grid Synthesis NOT: 978-0-618-65613-4 A PTS: 1 DIF: Level C REF: MCT90038 MO 10.3.3.C.1 TOP: Lesson 9.6 Identify Symmetry graph | polygon | rotational | convex | symmetric BLM: Comprehension 978-0-618-65613-4 D PTS: 1 DIF: Level B REF: MLPA0742 Lesson 9.6 Identify Symmetry KEY: symmetry | rotation | rotational Application NOT: 978-0-618-65613-4 2
© Copyright 2026 Paperzz