Week4 Math 112 - 018 Rahman 8.2 Trigonometric Integration Lets look at a few examples first and then we’ll develop a general strategy. Sines and Cosines. R (1) Consider cos3 xdx. Solution: We recall the identity: cos2 = 1 − sin2 x. Lets see if we can use this to simplify the problem. Z Z 3 Z 2 cos x[1 − sin x]dx = cos xdx = Z cos xdx − sin2 x cos xdx. Now, the first integral is easy and the second integral we solve via u-sub where u = sin x ⇒ du = cos xdx. Z (2) Z cos3 xdx = sin x − Z 1 1 u2 du = sin x − u3 + C = sin x − sin3 x + C 3 3 sin5 x cos2 xdx. Solution: Lets use the same strategy as above, except this time on sin x. R 5 2 Z sin x cos xdx = 2 2 2 Z (sin x) sin x cos xdx = (1 − cos2 x)2 cos2 x sin xdx. We can go straight to u-sub with u = cos x ⇒ du = − sin x, Z sin5 x cos2 xdx = − (3) sin2 xdx Solution: For this problem if we used the identity we used for the past two problems we would be going in circles, so we use another identity - the double angle formula: cos 2x = 1 − 2 sin2 x, 0 π sin2 xdx = 0 Z 1 2 1 1 2 1 (1−u2 )2 u2 du = − u3 + u5 − u7 +C = − cos3 x+ cos5 x− cos7 x+C 3 5 7 3 5 7 Rπ Z (4) Z 1 2 Z π (1 − cos 2x)dx = 0 π 1 1 π x − sin 2x = 2 2 2 0 sin4 xdx Solution: This is similar to the above problem, R 2 Z 1 1 sin xdx = (1 − cos 2x) dx = (1 − 2 cos 2x + cos2 2x)dx 2 4 Z 1 1 1 3 1 = 1 − 2 cos 2x + (1 + cos 4x) dx = x − sin 2x + sin 4x + C 4 2 4 2 8 4 Z 1 Strategies for sinm x cosn xdx. R (1) If the power of the cosine term is odd (i.e. n = 2k + 1), save one cosine factor and use cos2 x = 1 − sin2 x, Z m sin x cos 2k+1 Z sinm x(cos2 x)k cos xdx Z sinm x(1 − sin2 x)k cos xdx. dx = = (1) Then substitute u = sin x ⇒ du = cos x. (2) If the power of the sine term is odd (i.e. m = 2k + 1), save one sine factor and use sin2 x = 1 − cos2 x, Z sin2k+1 cosn xdx = Z (sin2 x)k cosn xdx = Z (1 − cos2 x)k cosn x sin xdx. (2) Then substitute u = cos x ⇒ du = − sin x. (3) If the powers of both sine and cosine are even, use the double-angle formulas: sin2 x = 1 (1 − cos 2x) 2 cos2 x = 1 (1 + cos 2x) 2 sin x cos x = 1 sin 2x. 2 Tangents and Secants. (1) tan6 x sec4 xdx. Solution: We recall the identity sec2 x = 1 + tan2 x, and see where this takes us R Z tan6 x sec4 xdx = Z tan6 x(1 + tan2 x) sec2 xdx. Then we substitute u = tan x ⇒ du = sec2 xdx, then Z tan6 x sec4 xdx = (2) Z 5 Z u6 (1 + u2 )du = 1 7 1 9 1 1 u + u + C = tan7 x + tan9 x + C 7 9 7 9 tan5 θ sec7 θdθ. Solution: Here lets try using the other identity: tan2 x = sec2 x − 1, R 7 Z tan θ sec θdθ = 4 6 Z tan θ sec θ sec θ tan θdθ = (sec2 θ−1)2 sec6 θ sec θ tan θdθ. We employ the u-sub u = sec θ ⇒ du = sec θ tan θdθ, Z 5 7 tan θ sec θdθ = Z (u2 −1)2 u6 du = 1 11 2 9 1 7 1 2 1 u − u + u +C = sec11 x− sec9 x+ sec7 x+C 11 9 7 11 9 7 R Strategies for tanm x secn xdx. (1) If the power of the secant term is even (i.e. n = 2k, k ≥ 2), save a factor of sec2 x and use sec2 x = 1 + tan2 x, Z tanm x sec2k xdx = Z Z = tanm x(sec2 x)k−1 sec2 xdx tanm x(1 + tan2 x)k−1 sec2 xdx. (3) Then substitute u = tan x ⇒ du = sec2 xdx. (2) If the power of the tangent term is odd (i.e. m = 2k + 1), save a factor of sec x tan x and use tan2 x = sec2 x − 1, Z tan 2k+1 Z n x sec xdx = Z = (tan2 x)k secn−1 x sec x tan xdx (sec2 x − 1)k secn−1 x sec x tan xdx. (4) Then substitute u = sec x ⇒ du = sec x tan xdx Useful Integrals. These integrals are also pretty easy to derive if you forget them, Z tan xdx = − ln | cos x| + C = ln | sec x| + C. (5) Z sec xdx = ln | sec x + tan x| + C. (1) tan3 xdx. Solution: We use the identity tan2 x = sec2 x − 1, R Z (2) Z 3 (6) tan3 xdx = Z tan x(sec2 x − 1)dx = 1 tan2 x − ln | sec x| + C. 2 sec3 xdx. Solution: We integrate by parts with u = sec x ⇒ du = sec x tan xdx and dv = sec2 x ⇒ v = tan x, then R Z Z sec x tan xdx = sec x tan x − sec x(sec2 x − 1)dx Z Z Z = sec x tan x − sec3 xdx + sec xdx = sec x tan x − sec3 xdx + ln | sec x + tan x| Z 1 ⇒ sec3 xdx = [sec x tan x + ln | sec x + tan x|] + C. 2 sec xdx = sec x tan x − 2 Useful identities that you probably wont have to use that much. 1 sin a cos b = [sin(a − b) + sin(a + b)] 2 1 sin a sin b = [cos(a − b) − cos(a + b)] 2 1 cos a cos b = [cos(a − b) + cos(a + b)]. 2 R (1) sin 4x cos 5xdx. Solution: We use the first identity to get, Z Z 1 1 1 sin 4x cos 5xdx = (sin(−x) + sin 9x)dx = cos x − cos 9x + C. 2 2 18 One can also do this problem by parts, which is actually the preferred method, but a little extra knowledge never hurt anyone. (7) (8) (9)
© Copyright 2026 Paperzz