Document

Name: ________________________ Class: ___________________ Date: __________
Geometry Ch 10 test
Find the area. The figure is not drawn to scale.
____
____
____
____
1.
2.
3.
A. 28.12 cm 2
B. 3.9 cm2
C. 11.3 cm2
D. 56.24 cm 2
A. 30 yd2
B. 6.5 yd2
C. 13 yd2
D. 15 yd2
A. 4.4 cm2
B. 6.4 cm2
C. 8.8 cm2
D. 17.6 cm2
4. The area of a parallelogram is 280 cm2 and the height is 35 cm. Find the corresponding base.
A. 315 cm
B. 245 cm
C. 9,800 cm2
D. 8 cm
1
ID: A
Name: ________________________
____
____
____
____
ID: A
5. What is the height h of the parallelogram?
Not drawn to scale
A. 32
B. 28
C. 40.5
D. 35
6. An isosceles triangle has area of 125 ft2. If the base is 16 ft, what is the length of each leg? Round your
answer to the nearest tenth.
A. 22.4 ft
B. 17.6 ft
C. 15.8 ft
D. 500.1 ft
7. Find the area of an equilateral triangle with a side of 10.
A. 25 3 units2
C. 50 units2
5
3 units2
B. 25 units2
D.
2
8. In trapezoid PQRS, PQ  SR. Find the area of PQRS. Leave your answer in simplest radical form.
Not drawn to scale
A. 144  72 3 units2
B. 72  72 3 units2
C. 288 3  216 units2
D. 144 3  72 units2
2
Name: ________________________
ID: A
Find the area of the trapezoid. Leave your answer in simplest radical form.
____
9.
____ 10.
A. 31.5 cm2
B. 7 cm2
C. 81 cm2
D. 94.5 cm2
A. 77.2 in.2
B. 80 in.2
C. 75 in.2
D. 70 in.2
B. 78 ft2
C. 13 ft2
D. 156 ft2
____ 11.
A. 78
2 ft2
____ 12. A kite has diagonals 5.8 ft and 6 ft. What is the area of the kite?
A. 5.9 ft2
B. 23.6 ft2
C. 34.8 ft2
3
D. 17.4 ft2
Name: ________________________
ID: A
____ 13. Find the area of the rhombus. Leave your answer in simplest radical form.
A. 18 3 units2
B. 81 6 units2
C. 162 3 units2
____ 14. Given the regular hexagon, find the measure of each numbered angle.
D. 162 units2
A. m1  30, m2  60, m3  30
B. m1  m2  m3  60
C. m1  60, m2  30, m3  60
D. m1  60, m2  30, m3  30
A. m1  45, m2  135
B. m1  45, m2  67.5
C. m1  m2  60
D. m1  22.5, m2  78.75
____ 15. Given the regular polygon, find the measure of each numbered angle.
____ 16. The area of a regular hexagon is 50 in.2 Find the length of a side. Round your answer to the nearest tenth.
A. 19.2 in.
B. 4.4 in.
C. 7.6 in.
D. 5.8 in.
4
Name: ________________________
ID: A
____ 17. Find the area of a regular hexagon with an apothem 17.3 miles long and a side 20 miles long. Round your
answer to the nearest tenth.
A. 173.2 mi2
B. 2078.5 mi2
C. 692.8 mi2
D. 1038 mi2
____ 18. Find the area of a regular hexagon with side length of 10 m. Round your answer to the nearest tenth.
A. 450 m2
B. 129.9 m2
C. 86.6 m2
D. 259.8 m2
____ 19. Find the area of the regular polygon. Round your answer to the nearest tenth.
A. 176.6 in.2
B. 966.1 in.2
C. 80.0 in.2
D. 483.0 in.2
____ 20. A regular hexagon has a perimeter of 120 m. Find its area. Leave your answer in simplest radical form.
A. 1800 3 m2
B. 5 3 m2
C. 600 3 m2
D. 3600 3 m2
____ 21. The widths of two similar rectangles are 21 ft and 18 ft. What is the ratio of the perimeters? Of the areas?
A. 8 : 7 and 64 : 49
C. 7 : 6 and 64 : 49
B. 8 : 7 and 49 : 36
D. 7 : 6 and 49 : 36
____ 22. The trapezoids are similar. The area of the smaller trapezoid is 709 m 2 . Find the area of the larger trapezoid
to the nearest whole number.
A. 11 m 2
B. 1479 m 2
C. 729 m 2
D. 1521 m 2
____ 23. The area of a regular octagon is 35 cm 2 . What is the area of a regular octagon with sides five times as long?
A. 625 cm 2
B. 875 cm 2
C. 175 cm 2
D. 245 cm 2
____ 24. It costs a family $324 to buy a 10-ft-by-12-ft rug. At this rate, what will it cost them to buy a 15-ft-by-18-ft
rug?
A. $729
B. $270
C. $388.80
D. $466.56
5
Name: ________________________
ID: A
____ 25. Hiram raises earthworms. In a square of compost 4 ft by 4 ft, he can have 1000 earthworms. How many
earthworms can he have if his square of compost has a side length that is 8 times longer?
A. 8000
B. 64,000
C. 256,000
D. 32,000
Find the area of the regular polygon. Give the answer to the nearest tenth.
____ 26. pentagon with a side of 6 ft
A. 49.5 ft 2
B. 61.9 ft 2
C. 123.9 ft 2
D. 12.4 ft 2
A. 9 in. 2
B. 31.2 in. 2
C. 93.5 in. 2
D. 187.1 in. 2
A. 259.8 in. 2
B. 129.9 in. 2
C. 65.0 in. 2
D. 53.0 in. 2
____ 27. hexagon with a side of 6 in.
____ 28. hexagon with a radius of 5 in.
Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
____ 29.
A. 10.5 m 2
B. 9.8 m 2
C. 19.6 m 2
D. 21.0 m 2
A. 2163.5 ft 2
B. 2139.9 ft 2
C. 4279.9 ft 2
D. 1995.5 ft 2
A. BDA ; 50
B.
C. BDA ; 310
D. AB; 310
____ 30. A gardener needs to cultivate a triangular plot of land. One angle of the garden is 47 , and two sides adjacent
to the angle are 77 feet and 76 feet. To the nearest tenth, what is the area of the plot of land?
____ 31. Name the major arc and find its measure.
AB; 50
6
Name: ________________________
ID: A
____ 32. Find the measure of CDE .
The figure is not drawn to scale.
A. 188
B. 182
A. ADB; 30
B.
A. 54 in.
B. 36 in.
____ 33. Name the minor arc and find its measure.
AB; 115
C. 162
C.
ADB; 245
Find the circumference. Leave your answer in terms of  .
D. 172
D. AB; 245
____ 34.
C. 18 in.
D. 324 in.
____ 35. The circumference of a circle is 64 cm. Find the diameter, the radius, and the length of an arc of 190°.
A. 32 cm; 64 cm; 16.9 cm
C. 128 cm; 32 cm; 185 cm
B. 64 cm; 32 cm; 33.8 cm
D. 64 cm; 128 cm; 16.9 cm
7
Name: ________________________
ID: A
____ 36. Find the length of YPX . Leave your answer in terms of  .
A. 30 m
B. 15 m
C. 5 m
D. 900 m
A. 4.2025 m2
B. 8.405 m2
C. 16.81 m2
D. 11.2 m2
B. 58 ft2
C. 81 ft2
D. none of these
Find the area of the circle. Leave your answer in terms of  .
____ 37.
____ 38. A 4-ft-by-5-ft dock is anchored in the middle of a lake. The bow of a boat is tied to a corner of the dock with
a 5-ft rope as shown in the picture. Find the area of the region in which the bow of the boat can travel. Round
your answer to the nearest square foot.
Not drawn to scale
A. 60 ft2
8
Name: ________________________
ID: A
____ 39. Find the area of the figure to the nearest tenth.
A. 70.6 in.2
B. 22.5 in.2
A. (4   ) in.2
B.
C. 141.1 in.2
D. 10.1 in.2
____ 40. Find the area of the shaded portion of the figure. Each vertex of square ABCD is at the center of a circle.
Leave your answer in terms of  .


 4  1   in.2



2 
C.


 4    in.2



4 
D.  in.2
____ 41. Find the area of a sector with a central angle of 170° and a diameter of 9.1 cm. Round to the nearest tenth.
A. 122.9 cm2
B. 30.7 cm2
C. 8.6 cm2
D. 3.4 cm2
____ 42. The area of sector AOB is 20.25 ft 2 . Find the exact area of the shaded region.
A. 20.25  40.5ft 2
B.
20.25  81ft 2
 20.25  40.5 2  ft 2


D. none of these
C.
9
Name: ________________________
ID: A
____ 43. Find the area of the shaded region. Leave your answer in terms of  and in simplest radical form.


A.  120  6 3  m2




B.  142  36 3  m2


C.
 120  36 3  m2


A. 192  144m2
C.
 8  144 3  m2


D. none of these
____ 44. Find the exact area of the shaded region.
B.


 192  144 3  m2


D. none of these
____ 45. A fly lands at random at a point on the grid. Find the probability of the fly landing on the figure.
A.
9
35
B.
9
70
C.
10
18
70
D.
9
61
ID: A
Geometry Ch 10 test
Answer Section
1. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
2. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
3. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
4. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
5. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
6. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
7. ANS:
REF:
OBJ:
NAT:
STA:
KEY:
A
PTS: 1
DIF: L3
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 1 Finding the Area of a Parallelogram
area | parallelogram | base | height
D
PTS: 1
DIF: L3
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 3 Finding the Area of a Triangle
triangle | area
A
PTS: 1
DIF: L3
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 3 Finding the Area of a Triangle
triangle | area
D
PTS: 1
DIF: L3
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 2 Finding a Missing Dimension
area | base | height | parallelogram
A
PTS: 1
DIF: L3
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 2 Finding a Missing Dimension
parallelogram | area | base | height
B
PTS: 1
DIF: L4
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 3 Finding the Area of a Triangle
triangle | area | isosceles triangle | leg
A
PTS: 1
DIF: L4
10-1 Areas of Parallelograms and Triangles
10-1.1 To find the area of parallelograms and triangles
CC G.GPE.7| CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-1 Problem 3 Finding the Area of a Triangle
area | triangle
1
ID: A
8. ANS:
REF:
OBJ:
TOP:
9. ANS:
REF:
OBJ:
TOP:
10. ANS:
REF:
OBJ:
TOP:
11. ANS:
REF:
OBJ:
TOP:
12. ANS:
REF:
OBJ:
TOP:
13. ANS:
REF:
OBJ:
TOP:
14. ANS:
OBJ:
NAT:
STA:
KEY:
15. ANS:
OBJ:
NAT:
STA:
KEY:
16. ANS:
OBJ:
NAT:
STA:
KEY:
17. ANS:
OBJ:
NAT:
STA:
KEY:
A
PTS: 1
DIF: L4
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 1 Area of a Trapezoid
KEY: trapezoid | area
D
PTS: 1
DIF: L3
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 1 Area of a Trapezoid
KEY: area | trapezoid
D
PTS: 1
DIF: L3
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 1 Area of a Trapezoid
KEY: trapezoid | area
B
PTS: 1
DIF: L3
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 2 Finding Area Using a Right Triangle
KEY: area | trapezoid
D
PTS: 1
DIF: L3
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 3 Finding the Area of a Kite
KEY: area | kite
C
PTS: 1
DIF: L3
10-2 Areas of Trapezoids, Rhombuses, and Kites
10-2.1 To find the area of a trapezoid, rhombus, or kite
NAT: CC G.MG.1
10-2 Problem 4 Finding the Area of a Rhombus
KEY: rhombus | diagonal | area
C
PTS: 1
DIF: L3
REF: 10-3 Areas of Regular Polygons
10-3.1 To find the area of a regular polygon
CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 1 Finding Angle Measures
regular polygon | apothem | hexagon
B
PTS: 1
DIF: L3
REF: 10-3 Areas of Regular Polygons
10-3.1 To find the area of a regular polygon
CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 1 Finding Angle Measures
regular polygon | radius
B
PTS: 1
DIF: L4
REF: 10-3 Areas of Regular Polygons
10-3.1 To find the area of a regular polygon
CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 2 Finding the Area of a Regular Polygon
regular polygon | hexagon | area | apothem | radius
D
PTS: 1
DIF: L3
REF: 10-3 Areas of Regular Polygons
10-3.1 To find the area of a regular polygon
CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 2 Finding the Area of a Regular Polygon
regular polygon | area | apothem | radius
2
ID: A
18. ANS: D
PTS: 1
DIF: L2
REF: 10-3 Areas of Regular Polygons
OBJ: 10-3.1 To find the area of a regular polygon
NAT: CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 3 Using Special Triangles to Find Area
KEY: regular polygon | hexagon | area | apothem | radius
19. ANS: D
PTS: 1
DIF: L3
REF: 10-3 Areas of Regular Polygons
OBJ: 10-3.1 To find the area of a regular polygon
NAT: CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 3 Using Special Triangles to Find Area
KEY: regular polygon | area | apothem | radius | octagon
20. ANS: C
PTS: 1
DIF: L4
REF: 10-3 Areas of Regular Polygons
OBJ: 10-3.1 To find the area of a regular polygon
NAT: CC G.CO.13 | CC G.MG.1| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b| 6.2.a
TOP: 10-3 Problem 3 Using Special Triangles to Find Area
KEY: regular polygon | radius | area | perimeter
21. ANS: D
PTS: 1
DIF: L3
REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 To find the perimeters and areas of similar polygons
NAT: CC G.GMD.3| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b
TOP: 10-4 Problem 1 Finding Ratios in Similar Figures
KEY: perimeter | area | similar figures
22. ANS: B
PTS: 1
DIF: L2
REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 To find the perimeters and areas of similar polygons
NAT: CC G.GMD.3| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b
TOP: 10-4 Problem 2 Finding Areas Using Similar Figures
KEY: similar figures | area | trapezoid
23. ANS: B
PTS: 1
DIF: L4
REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 To find the perimeters and areas of similar polygons
NAT: CC G.GMD.3| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b
TOP: 10-4 Problem 2 Finding Areas Using Similar Figures
KEY: similar figures | area
24. ANS: A
PTS: 1
DIF: L3
REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 To find the perimeters and areas of similar polygons
NAT: CC G.GMD.3| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b
TOP: 10-4 Problem 3 Applying Area Ratios
KEY: similar figures | area | word problem
25. ANS: B
PTS: 1
DIF: L3
REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 To find the perimeters and areas of similar polygons
NAT: CC G.GMD.3| N.3.c| N.3.f| M.1.c| M.1.f| A.4.e
STA: 2.3.c| 2.5.b| 2.5.c| 4.2.b
TOP: 10-4 Problem 3 Applying Area Ratios
KEY: similar figures | area | word problem
26. ANS: B
PTS: 1
DIF: L3
REF: 10-5 Trigonometry and Area
OBJ: 10-5.1 To find areas of regular polygons and triangles using trigonometry
NAT: CC G.SRT.9| M.1.f
STA: 2.3.c| 2.5.b| 4.2.b
TOP: 10-5 Problem 1 Finding Area
KEY: area of a regular polygon | area | regular polygon | tangent | measure of central angle of a regular
polygon
3
ID: A
27. ANS: C
PTS: 1
DIF: L3
REF: 10-5 Trigonometry and Area
OBJ: 10-5.1 To find areas of regular polygons and triangles using trigonometry
NAT: CC G.SRT.9| M.1.f
STA: 2.3.c| 2.5.b| 4.2.b
TOP: 10-5 Problem 1 Finding Area
KEY: area of a regular polygon | area | regular polygon | tangent | measure of central angle of a regular
polygon
28. ANS: C
PTS: 1
DIF: L3
REF: 10-5 Trigonometry and Area
OBJ: 10-5.1 To find areas of regular polygons and triangles using trigonometry
NAT: CC G.SRT.9| M.1.f
STA: 2.3.c| 2.5.b| 4.2.b
TOP: 10-5 Problem 2 Finding Area
KEY: area of a regular polygon | area | regular polygon | cosine | sine | measure of central angle of a regular
polygon
29. ANS: A
PTS: 1
DIF: L3
REF: 10-5 Trigonometry and Area
OBJ: 10-5.1 To find areas of regular polygons and triangles using trigonometry
NAT: CC G.SRT.9| M.1.f
STA: 2.3.c| 2.5.b| 4.2.b
TOP: 10-5 Problem 3 Finding Area
KEY: area of a triangle | area | sine
30. ANS: B
PTS: 1
DIF: L3
REF: 10-5 Trigonometry and Area
OBJ: 10-5.1 To find areas of regular polygons and triangles using trigonometry
NAT: CC G.SRT.9| M.1.f
STA: 2.3.c| 2.5.b| 4.2.b
TOP: 10-5 Problem 3 Finding Area
KEY: area | area of a triangle | problem solving | sine | word problem
31. ANS: C
PTS: 1
DIF: L3
REF: 10-6 Circles and Arcs
OBJ: 10-6.1 To find the measures of central angles and arcs
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 2 Finding the Measures of Arcs
KEY: major arc | measure of an arc | arc
32. ANS: D
PTS: 1
DIF: L3
REF: 10-6 Circles and Arcs
OBJ: 10-6.1 To find the measures of central angles and arcs
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 2 Finding the Measures of Arcs
KEY: major arc | measure of an arc | arc
33. ANS: B
PTS: 1
DIF: L3
REF: 10-6 Circles and Arcs
OBJ: 10-6.1 To find the measures of central angles and arcs
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 2 Finding the Measures of Arcs
KEY: measure of an arc | minor arc | arc
34. ANS: B
PTS: 1
DIF: L2
REF: 10-6 Circles and Arcs
OBJ: 10-6.2 To find the circumference and arc length
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 3 Finding a Distance
KEY: circumference | radius
35. ANS: B
PTS: 1
DIF: L4
REF: 10-6 Circles and Arcs
OBJ: 10-6.2 To find the circumference and arc length
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 4 Finding Arc Length
KEY: circumference | radius
36. ANS: B
PTS: 1
DIF: L3
REF: 10-6 Circles and Arcs
OBJ: 10-6.2 To find the circumference and arc length
NAT: CC G.CO.1| CC G.C.1| CC G.C.2| CC G.C.5
TOP: 10-6 Problem 4 Finding Arc Length
KEY: arc | circumference
4
ID: A
37. ANS:
OBJ:
NAT:
KEY:
38. ANS:
OBJ:
NAT:
KEY:
39. ANS:
OBJ:
NAT:
KEY:
40. ANS:
OBJ:
NAT:
KEY:
41. ANS:
OBJ:
NAT:
KEY:
42. ANS:
OBJ:
NAT:
KEY:
43. ANS:
OBJ:
NAT:
KEY:
44. ANS:
OBJ:
NAT:
KEY:
45. ANS:
OBJ:
NAT:
KEY:
A
PTS: 1
DIF: L3
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 1 Finding the Area of a Circle
area of a circle | radius
A
PTS: 1
DIF: L4
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 2 Finding the Area of a Sector of a Circle
sector | circle | area | central angle | word problem | problem solving
A
PTS: 1
DIF: L3
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 2 Finding the Area of a Sector of a Circle
sector | circle | area
A
PTS: 1
DIF: L4
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 2 Finding the Area of a Sector of a Circle
measure of an arc | area of a circle
B
PTS: 1
DIF: L3
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 2 Finding the Area of a Sector of a Circle
sector | circle | area | central angle
A
PTS: 1
DIF: L2
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 3 Finding the Area of a Segment of a Circle
sector | circle | area | central angle
C
PTS: 1
DIF: L4
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 3 Finding the Area of a Segment of a Circle
sector | circle | area | central angle
B
PTS: 1
DIF: L3
REF: 10-7 Areas of Circles and Sectors
10-7.1 To find the areas of circles, sectors, and segments of circles
CC G.C.5
TOP: 10-7 Problem 3 Finding the Area of a Segment of a Circle
sector | circle | area | central angle
B
PTS: 1
DIF: L3
REF: 10-8 Geometric Probability
10-8.1 To use segment and area models to find the probabilities of events
CC S.CP.1
TOP: 10-8 Problem 3 Using Area to Find Probability
area | triangle | probability
5