Exponential Rules

East Campus, CB 117
361-698-1579
Math Learning Center
West Campus, HS1 203
361-698-1860
EXPONENT RULES
Rule
Description
1 as an
exponent
π‘Žπ‘Ž = π‘Žπ‘Ž1
Product Rule
π‘Žπ‘Žπ‘šπ‘š βˆ™ π‘Žπ‘Žπ‘›π‘› = π‘Žπ‘Žπ‘šπ‘š+𝑛𝑛
0 as an
exponent
Quotient Rule
Power Rule
Raising a
product to a
power
Raising a
quotient to a
power
Negative
exponent
π‘Žπ‘Ž0 = 1
Any nonzero number to the power
of zero equals 1.
π‘Žπ‘Žπ‘šπ‘š
= π‘Žπ‘Žπ‘šπ‘šβˆ’π‘›π‘›
𝑛𝑛
π‘Žπ‘Ž
To divide with the same base,
subtract the exponents.
(numerator) – (denominator)
(π‘Žπ‘Žπ‘šπ‘š )𝑛𝑛 = π‘Žπ‘Žπ‘šπ‘šβˆ™π‘›π‘›
(π‘Žπ‘Žπ‘Žπ‘Ž)π‘šπ‘š = π‘Žπ‘Žπ‘šπ‘š π‘π‘π‘šπ‘š
π‘Žπ‘Ž π‘šπ‘š π‘Žπ‘Žπ‘šπ‘š
οΏ½ οΏ½ = π‘šπ‘š
𝑏𝑏
𝑏𝑏
π‘Žπ‘Žβˆ’π‘›π‘› =
1
π‘Žπ‘Žπ‘›π‘›
π‘Žπ‘Žβˆ’π‘šπ‘š 𝑏𝑏𝑛𝑛
=
π‘π‘βˆ’π‘›π‘› π‘Žπ‘Žπ‘šπ‘š
π‘Žπ‘Ž βˆ’π‘›π‘›
𝑏𝑏 𝑛𝑛
οΏ½ οΏ½ =οΏ½ οΏ½
𝑏𝑏
π‘Žπ‘Ž
Scientific
Notation
Anything β€œwithout” a power is
raised to the power of 1.
π‘šπ‘š
𝑁𝑁 × 10
(𝐴𝐴 × 10π‘šπ‘š )(𝐡𝐡 × 10𝑛𝑛 ) = 𝐴𝐴𝐴𝐴 × 10π‘šπ‘š+𝑛𝑛
(𝐴𝐴 × 10π‘šπ‘š ) ÷ (𝐡𝐡 × 10𝑛𝑛 ) = 𝐴𝐴 ÷ 𝐡𝐡 × 10π‘šπ‘šβˆ’π‘›π‘›
To multiply with the same bases,
add the exponents.
To raise a power to a power,
multiply the exponents and leave
the base unchanged.
To raise a product to a power,
raise each factor to that power.
To raise a quotient to a power,
raise each numerator and
denominator to the power.
To turn a negative exponent into a
positive exponent, move the base
and exponent to the denominator
(or numerator), depending on
where it is.
In scientific notation there is one
nonzero digit before the decimal
point.
𝐸𝐸𝐸𝐸.
2 × 10βˆ’5 π‘œπ‘œπ‘œπ‘œ 9.0713 × 106
When multiplying or dividing, be
sure the final answer is in scientific
notation.
East Campus, CB 117
361-698-1579
Math Learning Center
West Campus, HS1 203
361-698-1860
Rule
Example 1
Example 2
1 as an
exponent
5 = 51
0.3 = 0.31
32 βˆ™ 35 = 32+5 = 37 = 2,187
𝑦𝑦 4 βˆ™ 𝑦𝑦 5 = 𝑦𝑦 9
0 as an
exponent
Product Rule
Quotient Rule
Power Rule
Raising a
product to a
power
Raising a
quotient to a
power
Negative
exponent
Scientific
Notation
Scientific
Notation
Multiplication
Scientific
Notation
Division
(βˆ’2)0 = 1
65
62
5βˆ’2
=6
890 = 1
π‘₯π‘₯ 6
= π‘₯π‘₯ 6βˆ’8 = π‘₯π‘₯ βˆ’2
8
π‘₯π‘₯
3
= 6 = 216
(𝑧𝑧 4 )3 = 𝑧𝑧 4βˆ™3 = 𝑧𝑧12
(42)5 = 42βˆ™5 = 410 = 1,048,576
(π‘”π‘”β„Ž)6 = 𝑔𝑔6 β„Ž6
(5π‘₯π‘₯)3 = 53 π‘₯π‘₯ 3 = 125π‘₯π‘₯ 3
7
1 2 12 1
οΏ½ οΏ½ = 2=
3
3
9
βˆ’2
5
(π‘₯π‘₯ 3 )7 π‘₯π‘₯ 21
π‘₯π‘₯ 3
= 7
οΏ½ οΏ½ =
𝑦𝑦
𝑦𝑦 7
𝑦𝑦
π‘₯π‘₯ 4
π‘₯π‘₯ 4 𝑦𝑦 8
=
= π‘₯π‘₯ 4 𝑦𝑦 8
βˆ’8
𝑦𝑦
1
1
1
= 2=
5
25
. 000014 = 1.4 × 10βˆ’5
3,879,000 = 3.879 × 106
(15 × 108 ) ÷ (30 × 105 )
= (15 ÷ 30) × 108βˆ’5
= .5 × 103 = 5 × 102
(107.1 × 10βˆ’6 ) ÷ (1.05 × 10βˆ’2 )
= (107.1 ÷ 1.05) × 10βˆ’6βˆ’(βˆ’2)
= 102 × 10βˆ’4 = 1.02 × 10βˆ’2
Subtracted one from
the exponent, since
you move the decimal
one spot to the right
Added one to the
exponent, since you
move the decimal
one spot to the left
(βˆ’8 × 104 )(4 × 105 )
= (βˆ’8 βˆ™ 4) × 104+5
= βˆ’32 × 109 = βˆ’3.2 × 1010
Subtracted one from
the exponent, since
you move the decimal
one spot to the right
(. 7 × 10βˆ’3 )(. 2 × 10βˆ’4 )
= (.7 βˆ™ .2) × 10βˆ’3+(βˆ’4)
= .14 × 10βˆ’7 = 1.4 × 10βˆ’8
Added two to the
exponent, since you
move the decimal two
spots to the left