Differential Calculus 201-NYA-05 Vincent Carrier Exercise Sheet 7 2.5 Continuity y b 4 6 3 r r 2 r r 1 0 1 −4 −3 −2 −1 b −1 b b 2 3 4 x −2 −3 −4 1. Find the points where the above function is not continuous and identify the type of discontinuity for each. For numbers 2 to 13, find the point(s) at which the function is not continuous (if there are any) and identify for each the type of discontinuity. 2. f (x) = x 2 x −9 3. f (x) = x2 − 3x − 4 x−4 4. f (x) = 6 − 2x |3 − x| 5. f (x) = x2 + 3x − 4 x2 − 1 6. f (x) = x3 − 3x + 2 x2 + x + 2 7. f (x) = x2 − 2x − 3 x2 − x − 2 2 x +x−6 x−2 8. f (x) = x2 + 4x − 9 x2 − 5x − 9 2 10. f (x) = x2 − 9x + 14 7−x if x < 2 if x ≥ 2 2 −1 (x + 1) − 1/2 x+1 9. f (x) = 1 if x < 7 if x = 7 if x > 7 11. f (x) = 2 x + 5x + 4 √ 3 − 1 − 2x if x 6= −1 if x = −1 if x < −4 −9 if x = −4 7 − x2 if x > −4 12. f (x) = 2 x + 2x − 3 (9 − x2 )8 x2 − 4x − 2 4 13. f (x) = x2 − 7x + 10 |5 − x| if x < −3 4 if x = −3 x3 + 2x2 + 1 if x > −3 if x < 5 if x = 5 if x > 5 Answers: 1. removable: x = −2 2. x = −3, 3 3. x=4 4. x=3 5. x=1 x = −1 6. Continuous on R 7. x = −1 x=2 8. x=2 9. x = −1 10. x=7 jump: x = −3, −1, 1 lim x→−3− x = −3 13. x=5 = −∞, lim− = −∞ infinite x→3 lim f (x) = 5 removable x→4 lim f (x) = 2, lim+ f (x) = −2 jump lim f (x) = 5/2 removable x→3− x→3 x→1 lim f (x) = −∞ infinite lim f (x) = 4/3 removable lim f (x) = ∞ infinite x→−1− x→−1 x→2− lim f (x) = 5, lim f (x) = 3, f (2) = 3 jump lim f (x) = 1/2, f (−1) = 1 removable lim f (x) = 5, lim f (x) = −5, f (7) = 2 jump x→2− x→2+ x→−1 x→7− x→7+ lim f (x) = −9, 11. Continuous on R 12. infinite: x = 2 x→−4− lim f (x) = ∞, x→−3− lim f (x) = −9, f (−4) = −9 x→−4+ lim f (x) = −8, f (−3) = 4 x→−3+ lim f (x) = 3, lim f (x) = 3, f (5) = 4 x→5− x→5+ infinite removable
© Copyright 2026 Paperzz