Search for Neutrino-less Double Beta Decay with CANDLES UMEHARA Saori [email protected] T. Kishimoto, M.Nomachi, S. Ajimura, S.Yoshida, K.Matsuoka, N. Nakatani, K. Ichimura, G.Ito, K.Yasuda, H.Kakubata, M. Saka, K. Takubo, K. Seki, W. Wang, Y.Tamagawa, I.Ogawa, K.Fushimi, R.Hazama, H. Ohsumi, K.Okada CANDLES collaboration Osaka University, University of Fukui, University of Tokushima, Hiroshima University, Saga University, Kyoto San-gyo University Y. Fujii, Y. Sakuma, M. Nomura, T. Suzuki, T. Kaneshiki, S. Nemoto Tokyo Institute of Technology, Sophia University Outline Double Beta Decay of 48Ca ELEGANT VI System (previous system) = CaF2(Eu) scintillators + CsI(Tl) scintillators system Result CANDLES System (next system) = CaF2(pure) scintillators + Liquid scintillator system CANDLES III system (at Kamioka Underground Lab.) Pre-measurement (without liquid scintillator) Mass Spectrum of Calcium R&D 48Ca 40Ca enrichment 42 Summary ×10 Ca 43Ca 44Ca ×0.1 ×0.1 ×0.1 46Ca ×0.001 48Ca ×0.1 UMEHARA Saori, 28th Jul. 2011, PANIC11 Double Beta Decay Double Beta Decay Two neutrino double beta decay within Standard model →already observed Neutrino-less double beta decay (~1025years) not obserbed T1/2 > cf. H.V. Klapdor-Kleingrothaus et al. If observed Neutrino → Majorana particle Lepton number violation Decay rate T1/2 ∝ 1/m2 Neutrino-less double beta decay nucleus UMEHARA Saori, 28th Jul. 2011, PANIC11 Double Beta Decay Experimental study for double beta decay because double beta decay = rare decay Large amount of double beta nuclei a few kg ~ a few ton Low background condition 1/m ∝ T1/2 ∝ Mdetector if no background 1/m ∝ T1/2 ∝ Mdetector1/2 if background limited Nuclei and measurement of double beta decay for example . . . 76Ge 100Mo 130Te 136Xe 48Ca : Klapdor et al., IGEX, MAJOANA, GERDA : NEMO3→SuperNEMO, ELE V→MOON : Cuoricino→CUORE : EXO, NEXT, : Our group(ELEGANT VI→CANDLES) th UMEHARA Saori, 28 Jul. 2011, PANIC11 Double Beta Decay of 48Ca Why 48Ca? Higher Q-value(4.27MeV) . . . 76Ge(2.0MeV),100Mo(3.0MeV),130Te(2.5MeV) →Low background because Q-value is higher than BG Emax=2.6MeV(208Tl, -ray) 3.3MeV(214Bi,-ray) We have developed the detector system for no background measurement Double Beta Decay of 48Ca by CaF2 Scintillators ELEGANT VI system Scale up CANDLES series UMEHARA Saori, 28th Jul. 2011, PANIC11 ELEGANT VI ELEGANT VI ELEctron Gamma-ray Neutrino Telescope Schematic drawing of ELEGANT VI CaF2(Eu) CaF2 Scintillator (CaF2(Eu)) 23 Crystals(45×45×45cm3:290g) Source of Decay : 48Ca (Q=4.27MeV) veto counters 46 CaF2(pure) 38 CsI(Tl) → 4 Active Shield CaF2(pure) CsI(Tl) LiH Air-tight Box Cu Pb Passive shields for -ray Cu : 5cm,Pb : 10cm for Neutron LiH+Paraffin :15mm Cd sheet : 0.6mm H3BO3 loaded water UMEHARA Saori, 28th Jul. 2011, PANIC11 Result of ELEGANT VI Obtained Result COUNTS(/40keV) Energy Spectra(Jan2003-) Q of 48Ca 10 Run summary (Measurement for 4 years) 2 Date 10 212Bi (Sim) 1 Number of Event Expected BG (212Bi,214Bi,208Tl) Live Time kg・day Jun1998- 0 1.30 1553 Jan2003- 0 0.27 3394 208Tl 10 10 -1 (Sim) -2 3000 3250 3500 3750 4000 4250 4500 4750 5000 No events in 0 Energy Window Energy(keV) 0 Half-Life of 48Ca : > 5.8 × 1022 year (90% C.L.) <m < (3.5-22) eV For higher sensitivity, we need a large amount of 48Ca. UMEHARA Saori, 28th Jul. 2011, PANIC11 Design Concepts of CANDLES CANDLES CAlcium fluoride for studies of Neutrino and Dark matrters by Low Energy Spectrometer Undoped CaF2 scintillator (CaF2(Pure)) Liquid Scintillator (Veto Counter) Long attenuation length (>10m@350nm) Double beta decay source 48Ca (Q =4.27MeV) bb Liquid scintillator 4 Active Shield Large photomultiplier tube Signals from both scintillators are detected simultaneously Active Shielding Technique Different time constants CaF2(pure) : ~1sec Liquid scintillator : a few 10 nsec CaF2(Pure) Buffer Oil Large PMT UMEHARA Saori, 28th Jul. 2011, PANIC11 Active Shielding Technique Concept of 4 Active Shield and Performance Test PSD between CaF2 and Liquid Scintillators Setup Acrylic Case :20×20×20cm3 5inch PMT 80nsec Liq. Scintillator γ-ray 4μsec Partial ADC Gate Full ADC Gate Liquid Scintillator Event CaF2(pure) β-ray CaF2(pure) Event Ratio Partial/Full Liquid Scintillator 1 2 0 CaF2(pure) :10×10×10cm3 Energy 2400~2600keV 0.8 0.6 Liquid Scintillator 0.4 Clear Discrimination 0.2 CaF2(pure) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 CaF2 Energy(keV) Clear Discrimination between CaF2 and Liquid Scintillators . . .Well Act as Veto Counter UMEHARA Saori, 28th Jul. 2011, PANIC11 CANDLES III at Kamioka Lab. New experimental room at Kamioka underground Lab. CANDLES III 3m diameter × 4m height (water tank) Kamioka Lab. Map KamLAND Lab D Super Kamiokande 4m 3m CANDLES CANDLES III UMEHARA Saori, 28th Jul. 2011, PANIC11 th UMEHARA Saori, 12 May. 2010, RCNP CANDLES III at Kamioka Lab. CANDLES III 62 PMTs 96 CaF2(pure) Scintillators (~300kg) Inside Modules (CaF2 Scintillators) First measurement : without LS and water for check of CaF2 pulse shape (without LS pulse) Inside View of Water Tank UMEHARA Saori, 28th Jul. 2011, PANIC11 Measurement without LS and Water Typical Pulse Shape 200 150 100 50 0 Decay Constant 1sec = CaF2 Signal Pulse Height Sum Signal from 62 PMTs Pulse Height 250 50 40 Signal from each PMT PMT22 30 20 Photoelectrons 10 0 -10 100 125 150 175 200 225 250 275 300 0 100 200 300 400 Time(2nsec) Time(nsec) 200 600 800 100012001400160018002000 200 400 1000 1800 2600 3400 FADC for CANDLES system Time(2nsec) Time(nsec) ・ Beginning of pulse : 500MHz FADC ・ Late of pulse : 16MHz FADC for Data suppression UMEHARA Saori, 28th Jul. 2011, PANIC11 Measurement without LS and water 10 3 Pile-up event Signals from 48PMTs Event at 4.5 MeV = expected BG event 400 Pulse Height Counts Energy Spectrum 350 10 300 2 250 200 150 10 100 40K 50 0 208Tl 1 0 1000 2000 3000 4000 5000 Energy(keV) ・ 40K、208Tl can be observed. →Reference pulse for CaF2 signal 200 400 600 800 100012001400160018002000 400 1200 2000 2800 3600 Time(2nsec) Time(nsec) In this measurement . . . ・A high contaminated crystal as reference crystal (~30mBq/kg) We can reject by FADC June 2011 . . . UMEHARA Saori, 28th Jul. 2011, PANIC11 We started the measurement with LS and water. R&D: Enrichment of 48Ca for Study of 0by CANDLES It needs a large amount of 48Ca(~10kg) →1st Step : Large scale detector : CaF2 of 300kg ~ a few ton →2nd Step :48Ca enrichment (~2%⇔natural abundance 0.187%) Technologies for 48Ca Enrichment Gas diffusion 、、、 × Gas centrifuge 、、、 × Chemical process 、、、 ○ Isotope enrichment by Crown-Ether Calcium = No Gaseous Compound Crown-Ether o Crown-ether rings adsorb Calcium ions o 40 o Ca For calcium,40Ca adsorption in crown-ether ion o o th is slightly prior UMEHARA Saori, 28 Jul. 2011, PANIC11 o Setup for Enrichment Test Experimental system Chromatography: Breakthrough method = Migration of Ca solution in resin area 2、Ca solution CaCl2 +Conc. HCl 5、Measurement of isotopic ratio fixed flow rate by pump Migration length = 1m 20m 200m 1、Crown-ether resin packed in column 4、Measurement of Ca concentration Fraction collector 1m glass column of 8mm×100cm Water pump Water UMEHARA Saori, 28th Jul. 2011, PANIC11 3、Sampling thermo. bath by fraction collector Result of Enrichment Isotope Enrichment with Longer Migration Time (Length) ~7hours 1m migration length longer ~70hours 20m longer ~250hours 200m Isotope Effect by Crown-ether max: 0.0026 larger higher larger (volume of Ca) higher (isotopic ratio) Amount of Enrichment by Crown Ether Isotope Effect (Enrichment Effect) Natural isotopic ratio = 0.0019 ・The longer migration time(length) = the larger volume and the higher isotopic ratio ・We continue to study 48Ca enrichment. th UMEHARA Saori, 28 Jul. 2011, PANIC11 Current Rough Estimation for 2%48Ca、200kg Calcium Migration time : ~5~ years for improvement Kind of crown-ether Now:Benzo-18-crown-6-ether Candidate : for example. . . Dibenzo-18-crown-6-ether → inexpensive (~1/10) Optimization of migration parameter Mass Spectrum Calcium . . ) Solvent : (now) HCl → (Candidate) Organic solvent of (methanol. Good adsorptive rate 40Ca 42Ca 43Ca 44Ca 46Ca 48 Migration speed : (now)0.3ml/min,1ml/min→3ml/min. . . Ca time effective ×10 ×0.1 ×0.001 ×0.1 ×0.1 ×0.1 UMEHARA Saori, 28th Jul. 2011, PANIC11 Summary ELEGANT VI at Oto Cosmo Obs. 7kg of CaF2(Eu) Scintillators T1/2 > 5.8 × 1022 years (< 3.5-22 eV) CANDLES III at Kamioka Lab. 300kg of CaF2(pure) scintillators Expected sensitivity : 0.5 eV for <m> R&D (for next CANDLES ) Current status We started the measurement in June. Enriched 48CaF2(pure) scintillators Sensitivity : ~0.2 eV~0.05eV UMEHARA Saori, 28th Jul. 2011, PANIC11 UMEHARA Saori, 28th Jul. 2011, PANIC11 Backgrounds Radioactive Contaminations in CaF2 Crystals Pile-up because of of CaF2 signal = 1sec Pile-up Events Th-Chain 232Th 208Tl 212Bi 212Po 64% T1/2 = 0.3sec 208Tl 208Pb + stable Emax=5.3MeV(Th-chain) 5.8MeV(U-chain) Event Th-Chain 232Th 212Bi 36% 3.0min Q = 5.0MeV T1/2 = 208Pb stable Emax=5.0MeV 212Bi and 208Tl(T1/2=3min) . . . Space-Time Correlation Cut 2 Events Possible to reduce by good energy resolution . . . negligible in CANDLES III (expected resolution = ~4% at 4.27MeV) Background Rejection Pile-up Events . . . Pulse Shape Analysis by using FADC UMEHARA Saori, 28th Jul. 2011, PANIC11 Rejection of Pile-up Events Pile-up Events Pile-up Th-Chain 212Bi 232Th T1/2 = 0.3sec 212Po Q=2.2MeV 64% Q=7.8MeV T1/2 = 1.1 x 1010year Shape Indicator Pulse Height (ch) Prompt Delayed Typical pulse shape(500MHz FADC) Particle discrimination between and -rays 160 140 120 100 t= 890ns 80 easily identified 60 20 10 5 0 40 0 ray -5 20 00 100 1000 200 2000 300 3000 400 4000 500 5000 Time(nsec) :2MeV -ray 15 -10 0 500 1000 1500 2000 :600keV 2500 3000 Energy(keV) Pile-up event rejection ~99% Clear discrimination for t > 5nsec Rejection by particle discrimination 99%28th Jul. 2011, PANIC11 UMEHARA~Saori, →Improvement with 4 order of magnitude Setup for Long Migration Setup for Long Migration Experiment (200m migration) for high enriched Ca Regeneration & Reuse of Resin (by removing Ca ion) Original Ca Solution - Experimental Setup - 1m × 200 columns 1m In this experiment, 18 times 12 columns = ~200m Enriched 48Ca Study for possibility of high enrichmentth UMEHARA Saori, 28 Jul. 2011, PANIC11 by long migration length Rejection of LS Signals Rejection by using FADC Data 3 Types of Pulse Shapes of CaF2 = 900nsec LS = ~20nsec CaF2 150 100 50 0 250 200 150 TimeTime(2ns) (nsec) 250 200 100 50 50 0 0 100 -100 150 200 250 200 300 300 350 400 400 500 450 600 500 -200 0 100 TimeTime(2ns) (nsec) 100 -100 150 200 250 200 300 300 350 400 400 500 450 600 500 -200 0 100 TimeTime(2ns) (nsec) Charge in partial gate = large Charge in partial gate = small Charge-Ratio = LS 150 100 partial gate full gate 100 -100 150 200 250 300 400 500 450 600 500 -200 0 100 200 350 300 400 CaF2+LS Pulse Height 200 Pulse Height Pulse Height Typical Pulse Shapes 250 charge in partial gate charge in full gate We can clearly discriminate between CaF2 and others UMEHARA Saori, 28th Jul. 2011, PANIC11
© Copyright 2026 Paperzz