PC\|MAC

Back
Lesson
Print
Name
Class
Date
Assessment
Light and Reflection
Section Quiz: Curved Mirrors
Write the letter of the correct answer in the space provided.
______ 1. What type of image is produced by an object that is far from a concave
spherical mirror?
a. smaller and upside down
b. larger and upright
c. smaller and upright
d. larger and upside down
______ 2. What distinguishes a real image from a virtual image?
a. Real images are inverted, whereas virtual images are upright.
b. Real images can be displayed on a surface, whereas virtual images
cannot.
c. Real images can be larger or smaller than the object, whereas virtual images are equal in size to the object.
d. Real images are possible with any type of mirror, whereas virtual
images only occur with flat mirrors.
______ 3. The mirror equation and ray diagrams are concepts that are valid only
for paraxial rays. What is a paraxial ray?
a. a light ray parallel to the principal axis of the mirror
b. a light ray perpendicular to the principal axis of the mirror
c. a light ray very near the principal axis of the mirror
d. a light ray very far from the principal axis of the mirror
______ 4. For a spherical mirror, the focal length is equal to
radius of curvature of the mirror.
a. one-fourth
b. one-half
c. twice
d. the square of
the
______ 5. For spherical mirrors, how many reference rays are used to find the
image point?
a. two
b. three
c. four
d. six
Copyright © by Holt, Rinehart and Winston. All rights reserved.
Holt Physics
87
Quiz
Back
Lesson
Print
Name
Class
Date
Light and Reflection continued
______ 6. Spherical mirrors suffer from spherical aberration; therefore, the rays
intersect exactly in a single point.
a. always
b. often
c. do not
d. can
______ 7. An object is located in front of a concave spherical mirror between the
center of curvature (C) and the focal point (F). Where is the image
located?
a. behind the mirror
b. between the mirror and the focal point
c. between the focal point and the center of curvature
d. beyond the center of curvature
______ 8. All of the following descriptions about images formed by convex
spherical mirrors are true except which one?
a. They are formed from converging rays.
b. They are smaller than the objects from which they are formed.
c. They are always virtual.
d. Their image distance is always negative.
9. How does a parabolic mirror differ from a spherical mirror? Why is a parabolic mirror often preferred to a spherical mirror?
10. A concave spherical mirror has a focal length of 20.0 cm. Locate the image of
a pen that is placed upright 50.0 cm from the mirror.
Copyright © by Holt, Rinehart and Winston. All rights reserved.
Holt Physics
88
Quiz
Back
Lesson
Print PAGE
TEACHER RESOURCE
13 Light and Reflection
Solution
Rearrange the equation to isolate the
image distance, and calculate.
1/q 1/f 1/p
1/q 1/20.0 cm 1/50.0 cm 0.0500/1 cm 0.0200/1 cm 0.0300/1 cm
q 33.3 cm
FLAT MIRRORS
1.
2.
3.
4.
9.
b
5. c
d
6. d
a
7. b
b
8. b
Answers may vary. Sample answer:
Virtual; the rays that form the image
appear to come from a point behind
the mirror.
10.
Eye
1
h
p
q
q
2
h
q
Object
Image
Mirror
13 Light and Reflection
CURVED MIRRORS
1.
2.
3.
4.
9.
a
5. b
b
6. c
c
7. d
b
8. a
Answers may vary. Sample answer: A
spherical mirror is a portion of a
spherical shell. In contrast, a parabolic
mirror is made from segments of a
reflecting paraboloid. With a parabolic
mirror, all rays parallel to the principal
axis converge at the focal point
regardless of where on the mirror’s
surface the rays reflect. Thus, a real
image forms without spherical aberration.
10. 33.3 cm
Given
f 20.0 cm
p 50.0 cm
The mirror is concave, so f is positive.
The object is in front of the mirror, so
p is positive.
13 Light and Reflection
COLOR AND POLARIZATION
1.
2.
3.
4.
9.
c
5. b
a
6. a
d
7. c
b
8. d
Answers may vary. Sample answer: In
the correct proportions, a mixture of
the three primary pigments produces
a black mixture because all colors
are subtracted or absorbed from white
light.
10. Answers may vary. Sample answer: By
rotating a polarizing substance in the
beam of light. If the light intensity
changes as the polarizing substance is
rotated and eventually no light can
pass through, the beam of light is
polarized.
14 Refraction
REFRACTION
1.
2.
3.
4.
9.
d
5. a
c
6. b
a
7. c
b
8. d
Answers may vary. Sample answer: As
wave fronts enter a transparent
medium, they slow down, but the
wave fronts that have not yet reached
the surface of the medium continue to
move at the same speed. During this
time the slower wave fronts travel a
smaller distance than do the original
wave fronts, so the entire plane wave
changes directions.
10. 31.6°
Given
ni 1.333
nr 1.458
qi 35.0º
Copyright © by Holt, Rinehart and Winston. All rights reserved.
Holt Physics
165
Answer Key