Nuclear Charge Radius Measurement of Beryllium Isotopes Ch. Geppert1,2, A.Krieger1, R.M. Sànchez3, D. Tiedemann1, M. Zakova1, M.L. Bissell4, K. Blaum5, N. Frömmgen1, M. Hammen1, J. Krämer1, K. Kreim5, T. Neff3, R. Neugart1, D.T. Yordanov5,6 and W. Nörtershäuser1,3 1) 2) 3) 4) 5) 6) Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz Helmholtzinstitut Mainz, Mainz GSI Gesellschaft für Schwerionenforschung GmbH, Darmstadt Instituut voor Kern-en Stralingsfysica, Katholieke Universiteit, Leuven MPI für Kernphysik, Heidelberg CERN, ISOLDE Physics Department, Geneva Laser Laser Spectroscopy Spectroscopy of of Highly Highly Charged Charged Ions Ions andand Exotic Exotic Radioactive Radioactive Nuclei Nuclei Outline Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei •Introduction to Halo Nuclei see talks from B. Jonson, P. Müller, M. Brodeur, I. Tanihata and …. •Charge Radius mass shift and field shiftcoefficient calculation Isotope Shift •Properties of Beryllium Isotopes isotopic chain, D1 & D2 transition, on-line production •Schematics of Collinear Laser Spec. classical design, technical challenges (voltage determination) •Experimental Setup 2008 schematic laser system and measurement procedure •Experimental Setup: Upgrade 2010 ion-photon coincidence •Results and Discussion development of charge radius along isotopic chain, comparison FMD calc. Isotope Shift Contributions Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Isotope 1 Isotope Shift := Frequency difference in an electronic transition between two isotopes IS Mass Shift Term ~ 10 GHz MS nuclear motion around center of mass + 2Z |(0)|2 3 1-10 MHz r Field Shift Term finite size of the nucleus V(r) = Isotope Shift Isotope 2 r Isotope Shift Calculations Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei • Z. C. Yan, W Nörtershäuser and G. W. F. Drake, Phys. Rev. Lett. 100, 243002 (2008). • M. Puchalski and K. Pachucki, Phys. Rev. A 78, 052511 (2008). measurement output theory calculation = Isotope Shift IS Mass Shift Term ~ 10 GHz Isotope Transition 7Be D1 / MHz -49 225.779(38) 9Be D1 0 10Be D1 17 310.441(12) D2 17 312.569(13) 11Be D1 31 560.294(34) 12Be D1 43 390.168(39) D2 43 395.499(39) 9,A MS + dimension of interest 2Z |(0)|2 3 1-10 MHz r Field Shift Term MS (reference) F= 2Z 3 |(0)|2 beryllium 1+ ion : F=-17.02 MHz/fm² Introduction to Beryllium – I neutron drip line proton drip line Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei N=8 2p3/2 F=0,1,2,3 2p½ F=1 2p½ F=2 7, 9 Be+ 2s½ D1 313 nm 10,12Be+ F=1 11Be+ F=0 2s½ 2s½ F=1/2 0 F=0 2p½ F=1/2 F=1 F=2 I=3/2 D2 transitions not resolved F=1 1/2 Introduction to Beryllium – II N=8 11Be: well known archetype of oneneutron halo nucleus Sn=0.5 MeV 12Be: halo nucleus? maybe not ?! decrease in matter radii trend, Sn=3.2 MeV S2n=3.7 MeV I. Tanihata et. al. PRL 55, 2676 (1985) I. Tanihata et. al. PL B 206, 592 (1988) 14Be: well known halo-nucleus; two- or four-neutron halo ? neutron drip line proton drip line Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Elastic Scattering 12Be at GSI Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Results of scattering experiments at cave C @ GSI using the IKAR detector strong increase at high momentum transfer indicates halo-character Rmatter=2.82 ± 0.12 fm Rcore=2.18 ± 0.10 fm Rhalo=5.41 ± 0.32fm pictures taken from: PhD thesis Stoyanka Ilieva 2009 @ University Mainz / GSI: "Investigation of the nuclear matter distribution of the exotic 12,14Be and 8B by elastic proton scattering in inverse kinematics” Production of Radioactive Isotopes: the ISOLDE Facility @ CERN • 1.4 GeV pulsed proton beam from PSB • ionization at RILIS (resonant laser ion source) • GPS mass separator (no RFQ cooler) Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Production of Radioactive Isotopes: Beryllium Yields @ ISOLDE Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Laser laser ion source für die resonante Ionisation Extraktion extraction Erdpotential Hochspannung high voltage Ionisation ionization Effusion effusion Target UC2) UC (z.B. target x Half life Yield (ions/ C) 7Be 53.12 d 1.4 E+10 10Be 1.51E+6 a 6.0 E+09 11Be 13.8 s 7.0 E+06 12Be 23.6 ms 1.5 E+03 14Be 4.35 ms 4.0 E+00 2008 Isotope 2010 Protonenstrahl proton beam Transfer Röhre transfer line upgrade: ion-photon coincidence technique Working Principle of Collinear Laser Spectroscopy high voltage ion source laser beam + (fixed frequency) + deflector unit (10° horizontal) ion optics Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Doppler-tuning of ion beam velocity (±10 kV) 1 L 2eU / m 1 2 + quadrupole lens velocity bunching by ion beam acceleration (30 - 60 kV) E const. 0 E 2eUmc 2 scanning high voltage charge exchange cell optical detection 0 laser beam Technical Challenges of Collinear Laser Spectroscopy high voltage ion source laser beam + (fixed frequency) + ion optics deflector unit (10° horizontal) + Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Doppler-tuning of ion beam velocity (±10 kV) 1 L 2eU / m 1 2 + Voltage Uncertainty + typical 10-4 6 V @ 60 kV 11 MHz artificial isotope shift 10-times larger than required resolution Straylight Background laser produces strong straylight background light in (classical) optical detection lower detection limit 105 ions / s quadrupole lens + charge exchange cell scanning high voltage optical detection 0 0 laser beam Improved Collinear Laser Spectroscopy Layout Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei high voltage laser beam (collinear) ion source + ion optics c 0 1 deflector unit (10° horizontal) + a 0 1 + + a c 2 1 2 2 0 02 + scanning high voltage optical detecton cancel out ß (=voltage) dependance Requirements: • two independent laser systems • measure absolute frequencies • accuracy: < 10-9 0 laser beam (anti-collinear) Experimental Setup: Laser System Layout Servo Dye Laser (Anticollinear) 20 m fiber Frequency Doubler Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Shaping Optics beam blocker Photodiode PMT Frequency Comb B 50000 COLLAPS Be+Beam 40000 Retardation Y A xis T itle Rubidium Clock 30000 20000 10000 Deflector 0 -1 5 0 0 -1 0 0 0 -5 0 0 0 500 X A x is T itle Dye Laser (Collinear) beam blocker 20 m fiber Frequency Doubler I2 FM-Iodine Lock Servo 1000 1500 Scanning Procedure 1. locking collinear laser frequency to feasible iodine line 2. choosing proper scanning range for deceleration voltage to scan over all resonance lines for collinear laser 3. adapt anti-collinear laser lock point on frequency comb such, that anti-collinear spectra can be observed in same voltage range Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Online Spectra of 10,11Be (2010) Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei 10Be 10Be > 200x > 200x 11Be 6x 11Be 6x Upgrade 2010: Ion-Photon-Coincidence 5 x108 10Be-ions/pulse scan time: 3 minutes Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei 30.000 10Be-ions/pulse scan time: 30 minutes Online Spectra of 12Be 12Be 26x D1 14x D2 Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Systematic Uncertainty Budget Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei laser laser beam laser beam laser ion beam ħk laser Uncertainty Contribution [kHz] Laser-/ion beam alignment al 500 Uncertainty of the atomic clock (frequency comb) fc 40 Photon recoil ph 100 syst. 511 total systematic uncertainty Online Beamtime Results: Overview Table Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Measurement of the absolute transition frequencies 0 , calculations of the isotope shift IS , the rms change in charge radius < r2> and the nuclear charge radius r Isotope 0 [MHz] IS [MHz] FS [MHz] < r2> [fm2] r [fm] 7Be -49 236.9(9) -11.11(97) 0.66(6) 2.646(16) 9Be 0 0 0 2.519 (12)* 10Be 17 323.4(8) 13.01 (83) -0.77 (5) 2.361 (17) 17 325.6(9) 13.03(92) -0.77(9) 2.361(23) 11Be 31 564.7(7) 4.42(72) -0.26(4) 2.466(15) 12Be 43 391.5(9) 1.29(95) -0.08(6) 2.503(17) 43 397.0(9) 1.50(99) -0.09(9) 2.501(22) 10Be 12Be (D2) (D2) better than 1 MHz rel. uncertainty ~1% * J. A. Jansen, et.al. Nuclear Physics A 188 (1972) Online Beamtime Results: Charge Radii Plot (2008) Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei 7Be Nuclear charge radius / fm 2,7 11Be 9Be 2,6 11Be 2,5 2,4 10Be 8Be 2,3 7 8 9 10 11 Be Isotope 12 13 14 Online Beamtime Results: Charge Radii Comparison 2008 - 2010 Nuclear charge radius / fm 2,7 Krieger et al., accepted by PRL 2008 – D1 arXiv:1202.4873v1 Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei 2010 – D1 2,6 * 2,5 2,4 2,3 7 * = reference isotope 9Be 8 9 10 11 Be Isotope from electron scattering: rc(9Be) = 2.519(12) fm, 12 13 14 [J.A. Jansen et al., Nucl.Phys.A 188, 337 (1972)] Comparison Experiment to FMD Theory 2008 - D1 2010 - D1 FMD multiconfig. calculation by Th. Neff 2,7 Nuclear charge radius / fm Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei 2,6 1d3/2 4 2s1/2 1d5/2 2 1p1/2 1p3/2 6 2 4 2,5 pure (sd)² 2,4 2,3 1s1/2 2 12Be pure p² N=8 7 8 9 10 11 Be Isotope 12 13 14 strong admixture of (sd)²-levels Comparison Experiment & Theory: splitting isotope shift splitting isotope shift subtracting isotope shifts in D1 and D2 transition 12-10 Experimental Pachucki & Puchalski Yan & Drake Be 12-9 Be Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei test of theoretical predictions splitting isotope shift shows excellent agreement…. 11-9 Be 10-9 Be ... among theoretical calculations 7-9 Be -8 -6 -4 -2 0 2 4 Splitting Isotope Shift / MHz 6 8 … among theory and experiment Conclusion Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei two laser spectroscopy beamtime runs at ISOLDE 2008 and 2010 measured although 2x complete (re-)installation of laser system etc. high consistency / reproducibility high resolution method for shortlived radioactive isotopes IS determination precision < 1 MHz thanks to high accuracy calculation of mass shift (Drake, Yan, Pachucki,..) charge radius determination better 1 % comparison with FMD calculations good agreement, strong (sd)²-admixt. test atomic theory calculations with experimental data excellent agreement in splitting isotope shift 7-11Be and 9-12Be Outlook 14Beryllium production yields too low for current online-facilities (at least for collinear laser spectroscopy) Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Thank you for your attention Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei Working group LaserSpHERe www.kernchemie.uni-mainz.de/laser or Google: „lasersphere“
© Copyright 2026 Paperzz