Cherry Creek High School Summer Assignment AP Calculus AB Please have the following worksheets completed and ready to be handed in on the first day of class in the fall. Make sure you show your work where appropriate. Answers are provided for you to check; however, you will not be given credit if you don’t show work on problems that require it. It is expected that you have a good understanding of this material coming into these courses as teachers will not be doing an extensive review of previously learned material. Have a great summer and we look forward to seeing you in the fall! The CCHS Math Department Cherry Creek HS AP Calc AB Summer Packet Supplement Limit Flowchart Cherry Creek HS AP Calc AB Summer Packet Supplement Derivative Rules Power d n x = n•xn-1 dx Product d f•g = f’•g + f•g’ dx Quotient d f f ′• g − f • g′ = g2 dx g Chain d f( g(x) ) = f’( g(x) )•g’(x) dx exponential d f(x) e = ef(x) • f’(x) dx logarithm f ′(x ) d ln[f(x)] = f (x ) dx Trig Derivative Rules d sinx = cosx dx d cosx = -sinx dx d tanx = sec2x dx d cotx = -csc2x dx d secx = secx•tanx dx d cscx = -cscx•cotx dx Pythagorean Identities cos x + sin2x = 1 tan2x + 1 = sec2x 2 Double Angle Sin(2A) = 2 sinAcosA Cos(2A) = cos2A – sin2A = 2cos2A – 1 = 1 – 2sin2A 2tan A Tan(2A) = 1− tan 2 A cot2x + 1 = csc2x Cherry Creek HS AP Calc AB Summer Packet Solving Equations Name Solve each. Give exact solutions. 1. x2 = 7x 2. x2 – 3x – 54 = 0 4. 2x − 1 = 5 7. 5. x2 −4 = 5 x 7 24 − = 2 x − 3 x + 5 x + 2x −15 2x-1 9. 4 = 8x+2 6. x4 – 2x2 – 24 = 0 8. 10. 42 + 3e3x/ 2 = 965 12. . log2x + log2(x-6) = 4 3. (x-3)2 = 12 x −1 + 3 = x 11. log9x = 3 2 13. e2x - 4ex = 0 Solve by graphing on a calculator. 14. e-x = 3x - x2 15. x2 = 5•cosx Give a general solution for each. 17. 2sinx – 1 = 0 18. 2cos2x + cosx – 1 = 0 Solve each inequality. Give answers in interval notation. x2 −4 20. 2x2 - x - 6 ≥ 0 21. 2 ≤0 x − 10x + 21 16. 2•1.02x = 4 + .5x x: [-30,300], y: [-30,150] 19. tan(4x) = 22. 2x + 3 ≤ 7 3 Cherry Creek HS AP Calc AB Summer Packet Graphing Name Sketch the graph of each: 1. . y = 3 x–5 4 4. y = -3(x-2)2 + 6 7. y = x +4 +1 10. y = ln(x+3) −3 (x+4) 2 2. 2x – 5y = 10 3. y - 2 = 5. y = x2 – 6x + 8 6. y = -2•| x-4 | - 3 8. y = 4−x2 9. y = 3−x 11. y = ex+1 12. Write the equation of the line thru (2,-3) and perpendicular to y = 2x - 4. Sketch one fundamental period for each. 13. y = 3sinx + 2 14. y = cos(2x – π) 15. y = 2secx Given a graph of f(x) at right, sketch a graph of each transformation. 16. f(x) + 2 17. f(x+2) 18. f (x ) 19. f(-x) Use a calculator to (a) Find any relative maximum or minimum values of the function. (b) Determine the intervals over which the function is increasing (c) Find the zeros of the function (d) Sketch the graph of the function. 20. f(x) = x3 - 4x2 + x - 4 21. f(x) = x4 - 3x2 – 4 22. Let f’(x) = -2x•(x-3)2•(x+4). Give intervals f(x) is increasing and decreasing. 23. Let g(x) = x6 - 6x5 + 12x4 - 8x3 + 4. Give intervals g(x) is concave up and down. Show the use of the derivative and appropriate derivative chart. x 2 + 2x + 4 on calculator. Give relative max/min as ordered pairs (nearest x +1 hundredth). Give asymptotes as equations. 24. Graph y = 25. Let h(x) = 2x3 - 3x2 - 12x + 24. Give absolute maximum and minimum over the interval [-3,3]. Cherry Creek HS AP Calc AB Summer Packet Limits and Continuity Name Find each limit. 1. lim 2x 3 − 3x 5 ⎛ 3πx − 4 ⎞ 2. lim sin⎜ ⎟ x →∞ ⎝ 2x + 1 ⎠ 3. lim 3x 4. lim x →∞ 4x − 1 x2 −3 5. lim x →−∞ x + 1 2x 2 − 7x + 6 6. lim x →2 x3 − 4x x →∞ x 2 + 5x + 4 x →−1 2x 2 − x − 3 x x −2 2x x →−∞ x − 5 2 x− 3 x2 − 9 7. lim 8. lim+ x2 − 4 10. lim 2 x →2 x − 4 x + 4 11. lim x 2 − 25 9x 2 ⎛ 9x + 1⎞ 12. lim log 3 ⎜ ⎟ x →∞ ⎝ x+2⎠ 13. lim 14. lim x+5 x+5 15. lim− x − 3 16. lim e −x 17. lim+ ln(x ) x →2 x →∞ (x + h)2 − x 2 h →0 h x →−∞ x →∞ 9. lim x →3 x →3 18. lim + x →0 19. Describe the continuity of f (x ) = x →π 2 1+ sinx cos x x 2 + 10x + 21 . x2 −9 20. Define f(2) so that f(x) is continuous: f (x ) = x2 −4 x −2 ⎧x 2 − 2c,x ≤ 2 21. Give ‘c’ so that f(x) is continuous: f (x ) = ⎨ ⎩ cx,x > 2 22. What feature of a graph (asymptote, hole, endpoint, break, etc) is described by the each limit statement(s): a. lim f (x) = ∞ b. lim+ f (x) = 1 and lim− f (x) = 3 x →2 x →2 c. lim− f (x) = −∞ and lim+ f (x) = ∞ x →1 x →1 d.. lim f (x) = 1 x →−∞ 23. Give one sketch of f(x) using all of the following information: a. lim f (x) = 1 b. lim f (x) = ∞ c. f(0) = 0 x →±∞ x →2 x →2 Cherry Creek HS AP Calc AB Summer Packet Derivatives and Applications Name dy for each. dx 1. y = 6x4 - 5x2 + x – 2 Find 3. y = 2. y = 3x11/3 - 2x7/4 - 2x1/ 2 + 8 3 2 + 5 + 53 x 4 x x 4. y = 2 x •(3x - 2) x2 cos x 5. y = 3sin2(4x) 6. y = 4 x 3 + 10x 4 8. y = 2x ⎧4x 3 − 3x 2 ,x ≥ 2 9. y = ⎨ ⎩ 2x + 1,x < 2 10. y = 11. y = (3x – 1) 1+ 2x 12. y = 3tan2(x) 14. y = cos2(3x) - sin2(3x) 15. xy2 = siny h( x ) ⎛ πx ⎞ 13. y = csc ⎜ ⎟ ⎝3⎠ 7. y = x 2 − 6x 16. Give the instantaneous rate of change of y = 5 - 2 x at (4,1). 17. Write the equation of the tangent line to y = 18. Determine the x-value(s) at which f(x) = 3x 2 − 2 at x = 3. x2 has a horizontal tangent. 3x − 4 19. Use implicit differentiation to find dy/dx: x2 + 4xy +4y2 – 3x = 6 20. Find the slope of the tangent to x2 + y2 = 16 at (3, 7 ) 21. A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2 ft/sec. How fast is the top moving down the wall when the base of the ladder is 7 feet from the wall? 250 + 6 + .1x x How many units should you produce to result in a minimum cost per unit? Find the minimum cost per unit. ______ 22. The cost per unit for a product is given by: C (x ) = Selected Answers Solving Equations 1. 0,7 2. 9,-6 3. 3± 2 3 4. -2,3 5. ± 29 6. ± 6 (±2ext) 7. -1 (3 ext) 8. 5 (2 ext) 9. 8 10. 3.819 11. 27 12. 8 (-2 ext) 13. ln4 14. .278, 2.983 15. ±1.252 π 5π π 2nπ π nπ 16. 199.381, -4.329 17. 19. + 2nπ, + 2nπ 18. + + 6 6 3 3 12 4 20. (-∞,-3/2] [2,∞) 21. [-2,2](3,7) 22. [-5,2] Graphing −1 20a. max(.131,-3.935) min (2.535,-10.879) (x − 2) 2 20b. (-∞,.131)(2.535,∞) 20c. x = 4 21a.max (0,4) min (±1.225,-6.25) 21b. (-1.225,0)(1.225,∞) 21c. x =±2 22. decr: (-∞,-4)(0,∞) 23. conc up: (-∞,0)(.553, 1.447)(2,∞) 24. rel.max: (-2.732,-3.464) rel min (.732,3.464) 25. Abs max (-1,31) abs min(-3,-21) 12. y + 3 = Limits and Continuity 1. -∞ 2. -1 3. 0 4. 3 4 5. -∞ 6. 1 8 7. −3 5 8. +∞ 9. 1 12 3 1 12. 2 13. 2x 14. -1 15. DNE 3 16. 0 17. -∞ 18. -∞ 19. Removeable discontinuity @ x=-3, essential disc. @ x=3, continuous x ≠ ±3 20. f(2) = 4 21. c = 1 22a. vert. asymptote 22b. break 22c. vert asymptote 22d. horizontal asymptote 10. DNE 11. Derivatives and Applications −1 −12 10 5 7 34 − 6+ 3 2 3. x −x 2 5 x x 2 3 x 2 2x cos x + x 2 sinx 3/2 1/2 4. y = 3x – 4x à y ‘ = 9 x − 5. 12sin(8x) 6. cos 2 x x ⎧12x 2 − 6x,x > 2 x −3 2 3 2 7. 8. y = 2x +5x à y’ = 4x +15x 9. y ′ = ⎨ 2,x < 2 ⎩ x 2 − 6x −π ⎛ −πx ⎞ ⎛ −πx ⎞ h ′(x ) csc⎜ 10. 11. (1+2x)-1/2(9x+2) 12. 6tanx•sec2x 13. ⎟ cot ⎜ ⎟ 3 2 h(x ) ⎝ 3 ⎠ ⎝ 3 ⎠ dy y2 = 14. y = cos(6x) à y’ = -6sin(6x) 15. 16. -1/2 dx cos y − 2xy −3 dy 3 − 2x − 4 y 9 = 17. y – 5 = (x − 3) 18. 0, 8/3 19. 20. dx 4x + 8 y 5 7 −7 21. 22. x = 50 à $16 per unit ft / sec 12 1. 24x3 -10x + 1 2. 11x 8 3 −
© Copyright 2026 Paperzz