Math 2143 - Brief Calculus with Applications Test #2 - 2013.03.26 Solutions Compute the following derivatives. 1. d x2 +3x−9 4 dx 2 d x2 +3x−9 4 = ln(4) 4x +3x−9 (2x + 3) dx 2. d x2 4 + 43x + 4−4 dx 2 d x2 4 + 43x + 4−4 = ln(4) 4x 2x + ln(4) 43x 3 dx 3. 2x+1 d 3x−7 e dx 2x+1 2x+1 2(3x − 7) − (2x + 1)3 d 3x−7 e = e 3x−7 dx (3x − 7)2 4. d e2x+1 dx e3x−7 d e2x+1 d 2x+1−(3x−7) e = 3x−7 dx e dx d −x+8 = e dx = −e−x+8 5. √ d ln (3x + 4) 3x + 1 dx √ d d ln (3x + 4) 3x + 1 = dx dx 1 ln(3x + 4) + ln(3x + 1) 2 3 1 3 = + 3x + 4 2 3x + 1 6. √ d ln (3x + 4) + 3x + 1 dx 3 3 + 2√3x+1 √ d √ ln (3x + 4) + 3x + 1 = dx (3x + 4) + 3x + 1 7. √ d ln(3x + 4) + ln 3x + 1 dx The answer here is the same as that of problem 5. 2 √ d 2x+1 e log2 ( 3x + 1) dx 8. √ d 2x+1 e log2 ( 3x + 1) = dx √ √ d 2x+1 d e log2 ( 3x + 1) + e2x+1 log2 ( 3x + 1) dx dx √ 1 1 3 = 2 e2x+1 log2 ( 3x + 1) + e2x+1 ln(2) 2 3x + 1 Compute the following itegrals. Z t2 (t3 +1)12 dt 9. Here, we let u = t3 + 1, thus du = 3t2 dt, or t2 dt = 13 du. Z Z 1 2 3 12 u12 du t (t + 1) dt = 3 1 13 u +C = 39 1 3 = (t + 1)13 + C 39 Z (ln(x))3 10. dx x Here is another substitution, we let u = ln(x), so du = x1 dx: Z Z (ln(x))3 dx = u3 du x 1 = u4 + C 4 1 = (ln(x))4 + C 4 Z 11. z 2 (ln(z))2 dz Integration by parts here, du = z 2 dz, and v = (ln(z))2 , which gives u = 13 z 3 and dv = 2 ln(z) z1 dz. So we have Z Z 1 2 z 2 (ln(z))2 dz = z 3 (ln(z))2 − z 2 ln(z)dz 3 3 We do not know the integral on the right, so we do another integration by parts, with du = z 2 dz, and v = ln(z). Thus, u = 31 z 3 and dv = z1 dz. Our integral now looks like: Z Z 1 2 z 2 (ln(z))2 dz = z 3 (ln(z))2 − z 2 ln(z)dz 3 3 Z 1 3 2 1 3 1 2 2 = z (ln(z)) − z ln(z) − z dz 3 3 3 3 1 2 1 3 1 = z 3 (ln(z))2 − z ln(z) − z 3 + C 3 3 3 9 1 3 2 3 2 3 2 = z (ln(z)) − z ln(z) + z + C 3 9 27 Z 1 12. −1 p 4 − 4w2 dw 3 First, we write this as Z 1 p 4 − 4w2 dw = 2 1 Z p 1 − w2 dw −1 −1 Note that the integral on the right is the area of the upper 1/2 circle of radius one, thus Z 1p Z 1p 4 − 4w2 dw = 2 1 − w2 dw −1 −1 =π Z 8 13. √ x x + 1dx 0 Using the substitution u = x + 1, we have du = dx and x = u − 1: Z 8 Z 8 √ √ (u − 1) udu x x + 1dx = 0 0 Z = 8 u3/2 − u du 0 8 2 5/2 1 2 u − u 5 2 0 2 5/2 1 2 = 8 − 8 5 2 = Z 3 14. 3 y − y dy −3 So first we need to determine how to define y 3 − y = |y(y − 1)(y + 1)|: 3 y − y, y≥1 3 −(y 3 − y), 0 ≤ y < 1 y − y = y 3 − y, −1 ≤ y < 0 3 −(y − y), y < −1 Next up, since we have an odd function, when we take an absolute value, we have an even function, thus: Z 3 Z 3 3 3 y − y dy = 2 y − y dy −3 0 We now use piecewise definitions given above: Z 3 Z 3 y − y dy = 2 −3 3 3 y − y dy 0 Z =2 = 65 2 3 Z −(y − y)dy + 3 3 y − y dy 1 3 ! 1 4 1 2 1 4 1 2 − y + y + y − y 4 2 0 4 2 1 0 =2 1 1
© Copyright 2025 Paperzz