1.1 Functions, Domain, and Range -β Worksheet MCR3U Jensen 1) Which graphs represent functions? Justify your answer. a) b) c) d) 2) Is each relation a function? Explain and make a rough sketch of the graph of each. a) π¦ = π₯ β 5 b) π¦ = 2 π₯ β 1 ! β 2 c) π₯ ! + π¦ ! = 4 3) State the domain and range. Represent as a table and graph. Then state if it is a function. a) {(-β5, 4), (-β4, -β1), (-β2, 1), (0, 4), (1, 3)} π₯ π¦ Domain: Range: Is this relation a function? b) {(-β3, -β4), (-β1, 2), (0, 0), (-β3, 5), (2, 4)} π₯ π¦ Domain: Range: Is this relation a function? 4) State the domain and range of each relation. Then state if the relation is a function. a) b) c) d) e) f) g) 5) Which of the following relations are functions? a) b) c) d) 6) Determine the domain and range of each of the following relations. Use a graphing calculator or a graphing app to help if necessary. Make a rough sketch of the graph. a) π¦ = βπ₯ + 3 b) π¦ = π₯ + 1 ! β 4 c) π¦ = β3π₯ ! + 1 !
d) π₯ ! + π¦ ! = 9 e) π¦ = !!! f) π¦ = 2π₯ + 1 7) Pam has 90 m of fencing to enclose an area in a petting zoo with two dividers to separate three types of young animals. The three pens are to have the same area. a) Express the area function for the three pens in terms of π₯ . b) Determine the domain and range for the area function. Answers 1) a, b, and c are functions. d is not a function. 2) a) function b) function c) not a function 3) a) D: {π β β|π₯ = β5, β4, β2,0,1} R: {π β β|π¦ = β1,1,3,4} b) D: {π β β|π₯ = β3, β1,0,2} R: {π β β|π¦ = β4,0,2,4,5} 4) a) D: {π β β} R: {π β β} this relation is a function b) D: {π β β} R: π β β π¦ β₯ 0} this relation is a function c) D: {π β β|π₯ β₯ 0} R: {π β β} this relation is NOT a function d) D: {π β β} R: {π β β|π¦ β€ β1} this relation is a function e) D: {π β β|π₯ β 3} R: π β β π¦ β 0} this relation is a function f) D: {π β β} R: {π β β| β 1 β€ π¦ β€ 1} this relation is a function g) D: {π β β| β 2 β€ π₯ β€ 2} R: {π β β| β 3 β€ π¦ β€ 3} this relation is NOT a function 5) b is the only relation that is a function 6) 7) a) π΄ = β2π₯ ! + 45π₯ b) D: {π β β|0 < π₯ < 22.5} R: {π β β|0 < π¦ β€ 253.1} 1.2 Functions and Function Notation β Worksheet MCR3U Jensen !
1) For each function, determine π(4), π(β5), and π β ! . !
a) π π₯ = ! π₯ + 11 c) π π₯ = 2(π₯ + 4)! !
e) π π₯ = ! b) π π₯ = 3π₯ ! + 2π₯ + 1 d) π π₯ = β6 f) π π₯ = π₯ + 5 2) If π π₯ = π₯ ! + 2, state the following. a) π(1) b) π(0) d) π(β2) e) π(3) 3) State π 4 for each of the following functions. a) π π₯ = 4 + 5π₯ b) π π₯ = π₯ ! β 6 d) π π₯ = 10 e) π π§ = π§ ! !
g) π π₯ = ! h) π π₯ = 13 β π₯ c) π(2) f) π
c) π π‘ = 9 β π‘ f) π π₯ = 8(5 β π₯) i) π π‘ = ! ! !
!
!
4) Write the ordered pairs associated with each mapping diagram. Then state if the relation is a function. a) b) c) d) Domain Range 5) Show each set of data in a mapping diagram. Then state if the relation is a function. a) { 1, 4 , 2, 1 , 3, β2 , 4, β5 , 5, β8 , 6, β11 , 7, β14 , 8, β17 } b) { β3, 4 , β2, β1 , β1, β4 , 0, β5 , 1, β4 , 2, β1 } c) { β5, 6 , β4, 9 , β3, 1 , β5, β6 , 1, β2 , 3, 8 , 8, 8 } d) { 9, 9 , 7, 9 , 5, 9 , 3, 9 } 6) State the domains of the following functions a) π π₯ = 8 β π₯ ! ! !!
b) π π₯ = (!!!)(!!!) Answers !"
1) a) ! , 9,
!"!
!"
b) 57, 66, 1 c) 128, 2, !""
!
!
!
!
d) -β6, -β6, -β6 e) ! , β ! , β ! f) 3, 0, !"
!
!
2) a) 3 b) 2 c) 6 d) 6 e) 11 f) ! !
!
3) a) 24 b) 10 c) 5 d) 10 e) 64 f) 8 g) ! h) 3 i) !" 4) a) { 1, 1 , 2, 4 , 3, 9 , 4, 16 } this relation is a function b) { β5, 11 , β4, 6 , β2, β4 , 0, β14 , 2, β24 } this relation is a function c) { β4, 6 , 3, 6 , 1, 6 , 5, 6 } this relation is a function d) { β1, β3 , 1, β3 , 1, 0 , 3, 2 , 5, 2 } this relation is NOT a function 5) a) function b) function c) Not a function d) function 6) a) {π β β|π₯ β€ 8} b) {π β β|π₯ β 1, π₯ β β3} 1.3 Max or Min of a Quadratic Function β Worksheet MCR3U Jensen 1) Determine the vertex for each quadratic function by completing the square. State if the vertex is a maximum or a minimum. a) π π₯ = π₯ ! + 14π₯ β 14 b) π π₯ = π₯ ! β 6π₯ + 17 c) π π₯ = π₯ ! + 7π₯ + 11 d) π π₯ = 2π₯ ! + 12π₯ + 16 !
!
e) π π₯ = β3π₯ ! + 6π₯ + 1 f) π π₯ = β ! π₯ ! β π₯ + ! 2) Use partial factoring to determine the vertex of each function. State if the vertex is a max or min. a) π π₯ = 3π₯ ! β 6π₯ + 11 b) π π₯ = β2π₯ ! + 8π₯ β 3 c) β π₯ = βπ₯ ! + 2π₯ + 4 d) π π₯ = 2π₯ ! + 12π₯ + 17 !
e) π π₯ = 4π₯ ! + 64π₯ + 156 f) π π₯ = ! π₯ ! β 3π₯ + 8 3) An electronics store sells an average of 60 entertainment systems per month at an average of $800 more than the cost price. For every $20 increase in the selling price, the store sells one fewer system. What amount over the cost price will maximize revenue? 4) Last year, a banquet hall charged $30 per person, and 60 people attended the hockey banquet dinner. This year, the hallβs manager has said that for every 10 extra people that attend the banquet, they will decrease the price by $1.50 per person. What size group would maximize the profit for the hall this year and what would the maximum profit be? 5) The path of a rocket is given by the function, β π‘ = β3π‘ ! + 30π‘ + 73 , where βhβ is the height in meters and βtβ is the time in seconds. a) What is the maximum height of the rocket? b) At what time does the rocket reach its maximum height? Answers !! !!
1) a) (-β7,-β63) min b) (3,8) min c) ! , ! min d) (-β3, -β2) min e) (1, 4) max f) (-β1, 2) max !
2) a) (1, 8) min b) (2, 5) max c) (1, 5) max d) (-β3, -β1) min e) (-β8, -β100) min f) (3, !) min 3) $1000 4) A group of 130 would give a max profit of $2535 5) a) 148 m b) 5 seconds 1.4 Working with Radicals β Worksheet MCR3U Jensen 1) Simplify a) 3(4 5) b) 5(β2 7 ) c) 2 3 3 2 2) Express each as a mixed radical in simplest form a) 12 b) 147 c) 252 3) Simplify a) 2 3 β 5 3 + 4 3 b) 11 5 β 4 5 β 5 5 β 6 5 c) 6 β 4 2 + 3 6 β 2 d) 2 10 β 10 β 4 10 + 5 4) Add or subtract as indicated a) 8 2 β 4 8 + 32 b) 20 β 4 12 β 125 + 2 3 c) 5 3 β 72 + 243 + 8 5) Expand and simplify a) 5 6 2 3 b) 8 5 10 6) Expand and simplify where possible a) 3 8 β 5 b) 3 6 β 3 7) Expand and simplify where possible a) 2 + 5
2 + 5 c) 1 + 5 1 β 5 d) 44 + 88 + 99 + 198 c) 11 2 5 3 c) 8 2 2 8 + 3 12 b) 3 + 2 2 5 + 5 2 d) 4 β 3 7
7 + 1 8) Simplify !
!
!
!
!
a) ! 54 β ! 150 b) ! 8 + ! 50 β ! 18 9) Find a simplified expression for the area of each shape a) b) c) d) 10) Find the area and perimeter of the rectangle shown. Express your answer in simplified radical form. 11) Simplify each of the following !"!! !
!"! !"
a) ! b) ! Answers 1) a) 12 5 b) -β2 35 c) 6 6 2) a) 2 3 b) 7 3 c) 6 7 3) a) 3 b) -β4 5 c) 4 6 β 5 2 d) β3 10 + 5 4) a) 4 2 b) β3 5 β 6 3 c) 14 3 β 4 2 d) 5 11 + 5 22 5) a) 30 2 b) 40 2 c) 55 6 6) a) 24 β 3 5 b) 3 2 β 3 c) 64 + 48 6 7) a) 27 + 10 2 b) 5 3 + 5 6 + 10 2 + 20 c) -β4 d) β17 + 7 !
8) a) β ! 6 b) 2 2 9) a) 3 2 b) 60 2 c) 45 d) 2π 10) area = 12 7 cm2; perimeter = 12 + 4 7 cm 11) a) 3 β 6 b) 3 β 3 1.5 Solving Quadratic Equations β Part 1: Solve by Factoring β Worksheet MCR3U Jensen 1) Solve by factoring a) π₯ ! + 8π₯ + 12 = 0 d) π€ ! β 18π€ + 56 = 0 2) Solve a) 3π₯ ! + 28π₯ + 9 = 0 b) β! + 9β + 18 = 0 e) π₯ ! β 2π₯ = 0 c) π! + 3π = 0 f) π ! β 17π + 30 = 0 b) 4π ! + 19π + 15 = 0 d) 16π ! β 1 = 0 3) Solve each quadratic equation by factoring a) π₯ ! + 2π₯ β 3 = 0 c) 4π₯ ! β 36 = 0 e) 15π₯ ! β 8π₯ + 1 = 0 f) 4π₯ ! β 12π₯ + 9 = 0 b) π₯ ! + 3π₯ β 10 = 0 d) 6π₯ ! β 14π₯ + 8 = 0 f) 6π₯ ! + 19π₯ + 10 = 0 4) Solve by factoring a) βπ₯ ! β 10π₯ β 16 = 0 b) 6π ! + 15π = β9 5) A rectangle has dimensions x+10 and 2x-β3. Determine the value of x that gives an area of 54 cm2 Answers 1) a) -β2, -β6 b) -β3, -β6 c) 0, -β3 d) 14, 4 e) 0, 2 f) 15, 2 !!
!!"
! !!
!
2) a) , -β9 b) -β1, d) , f) !
!
! !
!
!
! !
!
!
3) a) -β3, 1 b) -β5, 2 c) -β3, 3 d) , 1 e) , f) β , β !
! !
!
!
!!
4) a) -β8, -β2 b) -β1, !
5) 3.5 1.5 Solving Quadratic Equations β Part 2: Solve Using the Q.F. -β Worksheet MCR3U Jensen 1) Use the discriminant to determine the number of roots for each quadratic equation. !
a) π₯ ! β 10π₯ + 25 = 0 b) 3π₯ ! + 4π₯ + ! = 0 c) 2π₯ ! β 8π₯ + 9 = 0 d) β2π₯ ! + 0.75π₯ + 5 = 0 2) Solve each quadratic using the quadratic formula. Give exact answers. a) π₯ ! + 4π₯ β 3 b) βπ₯ ! + 12 = 9π₯ c) π₯ ! = β5π₯ + 2 d) π₯ ! β 3π₯ + 1 = 6 e) π₯ ! + 6π₯ + 9 = 0 g) 5π₯ ! β 3π₯ β 1 = 0 i) 4π₯ ! β 25 = 0 k) 8π₯ ! + 4π₯ β 5 = 0 f) 4π₯ ! β 6π₯ β 1 = 0 h) βπ₯ ! + 7π₯ β 18 = 0 j) 3π₯ ! β 7π₯ β 4 = π₯ ! β 4π₯ l) 4π₯ ! β 18π₯ = 0 3) Solve each quadratic equation using any method a) 3π₯ ! β 12π₯ = 0 b) 2π₯ ! + 4π₯ β 6 = 0 c) 3π₯ ! + 5π₯ β 2 = 0 d) 4π₯ ! β 11π₯ β 8 = 0 4) Three lengths of pipe measuring 24 cm, 31 cm, and 38 cm will be used to create a right triangle. The same length of pipe will be cut off each of the three pipes to allow a right triangle to be created. What is that length? Answers 1) a) one b) one c) none d) two 2) a) β2 + 7 , β2 β 7 b) g) !! !" !! !"
!"
, !"
!! !"# !! !"#
, !!
!
!!
!
h) no roots i) ! , β ! j) c) !!! !! !!! !!
!
, !! !" !! !"
!
, 1
!
!
k) 4) 3 cm !! !" !! !"
!
, !!! !! !!! !!
3) a) x = 0 and x = 4 b) x = 1 and x = β3 c) x = and x = β2 3
d) !
, d) x = !
!
e) -β3 f) !
l) ! , 0 11 ± 249
8
!! !" !! !"
!
, !
1.7 Solve Linear-βQuadratic Systems β Worksheet MCR3U Jensen 1) Determine if each quadratic function will intersect once, twice, or not at all with the given linear function. a) π¦ = 2π₯ ! β 2π₯ + 1 and π¦ = 3π₯ β 5 b) π¦ = βπ₯ ! + 3π₯ β 5 and π¦ = βπ₯ β 1 !
!
c) π¦ = ! π₯ ! + 4π₯ β 2 and π¦ = π₯ + 3 d) π¦ = β ! π₯ ! + π₯ + 3 and π¦ = π₯ 2) Determine the coordinates of the point(s) of intersection of each linear-βquadratic system. a) π¦ = π₯ ! β 7π₯ + 15 and π¦ = 2π₯ β 5 b) π¦ = 3π₯ ! β 16π₯ + 37 and π¦ = 8π₯ + 1 !
c) π¦ = π₯ ! β 2π₯ β 3 and π¦ = β3π₯ + 1 !
3) Determine the value of the y-βintercept of a line with the given slope that is a tangent line to the given curve. a) π¦ = β2π₯ ! + 5π₯ + 4 and a line with a slope of 1 b) π¦ = βπ₯ ! β 5π₯ β 5 and a line with a slope of -β3 4) The path of an underground stream is given by the function π¦ = 4π₯ ! + 17π₯ β 32. Two new houses need wells to be dug. On the area plan, these houses lie on a line defined by the equation π¦ = β15π₯ +
100. Determine the coordinates where the two new wells should be dug. Answers 1) a) do not intersect b) once c) twice d) twice 2) a) (4, 3), (5, 5) b) (2, 17), (6, 49) c) (-β4, 13), (2, -β5) 3) a) 6 b) -β4 4) (-β11, 265), (3, 55)
© Copyright 2026 Paperzz