Population Dynamics in South Africa Report No. 03-01-67 ISBN 978-0-621-43660-0 The South Africa I know, the home I understand Census 2011: Population Dynamics in South Africa Statistics South Africa Report No. 03-01-67 Pali Lehohla Statistician-General Statistics South Africa ii Census 2011: Population Dynamics / Statistics South Africa Published by Statistics South Africa, Private Bag X44, Pretoria 0001 © Statistics South Africa, 2015 Users may apply or process this data, provided Statistics South Africa (Stats SA) is acknowledged as the original source of the data; that it is specified that the application and/or analysis is the result of the user's independent processing of the data; and that neither the basic data nor any reprocessed version or application thereof may be sold or offered for sale in any form whatsoever without prior permission from Stats SA. Stats SA Library Cataloguing-in-Publication (CIP) Data Census 2011: Population Dynamics / Statistics South Africa. Pretoria: Statistics South Africa, 2012 Report No. 03-01-67 124pp ISBN 978-0-621-43660-0 A complete set of Stats SA publications is available at the Stats SA Library and the following libraries: National Library of South Africa, Pretoria Division National Library of South Africa, Cape Town Division Library of Parliament, Cape Town Bloemfontein Public Library Natal Society Library, Pietermaritzburg Johannesburg Public Library Eastern Cape Library Services, King William’s Town Central Regional Library, Polokwane Central Reference Library, Nelspruit Central Reference Collection, Kimberley Central Reference Library, Mmabatho This publication is available on the Stats SA website: www.statssa.gov.za For technical enquiries please contact: Diego Iturralde / Lesego Masebe Tel: (012) 310 8922 / (012) 310 6914 Fax: (012) 310 8339 Email: [email protected] / [email protected] For dissemination enquiries please contact Printing and Distribution, Statistics South Africa Ina du Plessis Email: [email protected] Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa iii Preface Evidence-based decision-making has become an indispensable practice universally because of its role in ensuring efficient management of populations, economic and social affairs. It is in this regard that Statistics South Africa (Stats SA) is mandated to provide the state and other stakeholders with official statistics on the demographic, economic and social situations of the country to support planning, monitoring and evaluation of the implementation of programmes and other initiatives. In fulfilling its mandate prescribed in the Statistics Act, (Act No. 6 of 1999), Stats SA has conducted three Censuses (1996, 2001 and 2011) and various household-based surveys. Censuses remain one of the key data sources that provide government planners, policy-makers and administrators with information on which to base their social and economic development plans and programmes at all levels of geography. Census information is also used in the monitoring of national priorities and their achievements, and the universally adopted Millennium Development Goals. This demand for evidence-based policy-making continues to create new pressures for the organisation to go beyond statistical releases that profile basic information and embark on the production of in-depth analytical reports that reveal unique challenges and opportunities that the citizenry have at all levels of geography. This analytical work also enhances intellectual debates which are critical for policy reviews and interventions. The above process is aimed at enabling the organisation to respond to, and support evidencebased policy-making adequately, build analytical capacity and identify emerging population, socio-economic and social issues that require attention in terms of policy formulation and research. The monograph series represents the first phase of detailed analytical reports that are theme-based aimed at addressing topics on education, disability, ageing, nuptiality, age structure, migration, fertility, and mortality among others. The age and sex structure of a population is affected by the changes in the population. These changes could be brought by migration, fertility or mortality. Amongst these three demographic phenomena, this report attempts to establish the main process that changed population age-sex structure. It also seeks to explore the possibility of the country to capitalise from the demographic dividend that stemmed from demographic transition. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa iv Acknowledgements Statistics South Africa wishes to express sincere thanks to Lesego Olga Masebe, Lesego Lefakane, Mercy Shoko, Diego Iturralde, David Baloyi and Princelle Dasappa-Venketsamy for the contributions they made in the compilation of this monograph. The organisation’s gratitude also goes out to Dr John Kekovole and Dr Nicole de Wet for their constructive criticisms, guidance, encouragement and technical expertise provided in the course of the review of this publication. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa v Executive summary Besides the major findings of the national population and housing results from Census 2011 which were published in 2012, a detailed analysis of the population age-sex structure was undertaken to provide an insight of the demographic transition over time. While the population aged 15–64 increased steadily from 1996–2011, the child population (0– 14) shows a decreasing trend across the years. South Africa has an intermediary population, with the median age ranking between 22 and 25. The white population group had the median ages of over 30 in all the three years under consideration; and this population group appears to be older than all other population groups. The overall sex ratio is still in favour of females, it increased from 92,7 in 1996 to 94,8 in 2011. The highest increase of sex ratio is more pronounced in the Indian/Asian population group. The burden of children and elderly on those who are economically productive declined over time, however, the white population group dependency ratio indicates a stable pattern from 1996 to 2011. Despite the attempts made to explain the population age-structure of the 2011 Census, empirical investigation still needs to be done to establish the declining child population aged within the 5–14 age group that was observed in 2011. Nonetheless, analysis of past mortality levels and trends, indicate that the marked increase in infant and child mortality, as well as the decrease in the life expectancy that were observed between 1998 and 2006 might be indicative of a decrease of this cohort. The intensive government programmes which appeared to have reduced child mortality rates and thus increased life expectancy, with the improved undercount rate of children aged 0–4 from 2001 to 2011 could be attributed to a broader base of the 2011 population structure. Amongst the three processes of population change, fertility seems to have been the main contributing factor to the change in population age-sex structure over time. The observed fertility decline that occurred more than four decades ago, resulted in the shift from child population to youth population aged 20–29. This youth bulge increased markedly from 1996 to 2011, thus creating a demographic dividend. The question that remained unanswered is whether the country could benefit from this window of opportunity. Empirical findings with regard to youth unemployment rates, uncertainties about quality of education and the scourge of HIV/AIDS among the young population might prohibit the country from benefiting from this demographic dividend. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa vi TABLE OF CONTENTS Chapter 1: Overview .................................................................................................................................................. 1 1.1 Introduction ....................................................................................................................................................... 1 Chapter 2: Assessment of data ................................................................................................................................ 4 2.1 Introduction ....................................................................................................................................................... 4 2.2 Imputation rates ................................................................................................................................................ 4 2.3 Comparison between the National Population Register, 2011 and census, 2011 ......................................... 5 2.4 Distribution of population by age in single years .............................................................................................. 6 2.5 Age ratios .......................................................................................................................................................... 7 2.6 UN Accuracy Index ........................................................................................................................................... 8 2.7 Summary......................................................................................................................................................... 10 Chapter 3: What could have contributed to the shape of age and sex structure of the population, 1996-2011?................................................................................................................................................................. 11 3.1 Introduction ..................................................................................................................................................... 11 3.2 The population structure of 1996, 2001 and 2011 .......................................................................................... 11 3.3 Mortality, fertility and population age sex structure ........................................................................................ 14 3.4 Change in the proportion of children (0–4) relative to women (15–49) .......................................................... 15 3.5 Migration and population age-sex structure ................................................................................................... 16 3.6 Summary......................................................................................................................................................... 17 Chapter 4: Empirical findings from Censuses 1996, 2001 and 2011 .................................................................. 18 4.1 Introduction ..................................................................................................................................................... 18 4.2 Observed indicators from Censuses 1996, 2001 and 2011 ........................................................................... 18 4.2.1 Broad age groups ........................................................................................................................................... 18 4.2.2 Median age ..................................................................................................................................................... 19 4.2.2.1 Median age by population group .................................................................................................................... 19 4.2.2.2 Median age by province .................................................................................................................................. 19 4.3 Overall sex ratios ............................................................................................................................................ 20 4.4 Dependency ratio ............................................................................................................................................ 21 4.4.1 Total dependency ratios by population group ................................................................................................. 21 4.4.2 Total dependency ratios by province .............................................................................................................. 21 4.4.3 Child dependency ratios by population group ................................................................................................ 22 4.4.4 Child dependency ratios by province .............................................................................................................. 22 4.4.5 Old age dependency ratios by population group ............................................................................................ 23 4.4.6 Old age dependency ratios by province ......................................................................................................... 23 4.5 Summary.............................................................................................................................................................. 24 Chapter 5: Population age-sex structure scenarios ............................................................................................ 25 5.1 Introduction ..................................................................................................................................................... 25 5.2 Projected scenarios ........................................................................................................................................ 25 5.3 Summary.......................................................................................................................................................... 27 Chapter 6: Demographic dividend ......................................................................................................................... 28 6.1 Introduction ..................................................................................................................................................... 28 6.2 The demographic dividend is delivered through several mechanisms ........................................................... 29 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa vii 6.2.1 Change in age structure ................................................................................................................................. 29 6.2.2 Change in fertility ............................................................................................................................................ 31 6.2.3 Infant and child mortality ................................................................................................................................. 31 6.2.4 Life expectancy ............................................................................................................................................... 32 6.3 Investing in health ........................................................................................................................................... 33 6.4 Education ........................................................................................................................................................ 35 6.5 Employment .................................................................................................................................................... 38 6.6 Youth and training skills .................................................................................................................................. 41 6.7 The demographic dividend and good governance ......................................................................................... 43 6.8 Labour market policies in South Africa ........................................................................................................... 43 6.8.1 Good governance and savings ....................................................................................................................... 44 6.8.2 Good governance and investor confidence .................................................................................................... 44 6.8.3 Good governance and gender equality .......................................................................................................... 44 6.8.4 Good governance and business ..................................................................................................................... 45 8 References .................................................................................................................................................... 48 9 Appendix......................................................................................................................................................... 54 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa viii List of tables Table 1: Imputation rates by age and sex, unadjusted Census 2011 ......................................................................... 5 Table 2: UN accuracy index, Censuses 1996, 2001 and 2011 ................................................................................... 9 Table 3: Proportion of children (aged 0–4) relative to women (aged 15–49), 2001 and 2011.................................. 16 Table 4: Projected and reported population size, 1996, 2001 and 2011 .................................................................. 26 Table 5: Projected and reported median ages and dependency ratios, 1996, 2001 and 2011 ................................ 27 Table 6: Composition of employment by skill levels .................................................................................................. 42 Table 7: Composition of skill levels of youth and adults, 1994 and 2014 ................................................................. 42 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa ix List of figures Figure 1: Trends in total fertility rate among women aged 15–49, (1970–2010) ......................................................... 2 Figure 2: Life expectancy in South Africa, 1996–2010 ................................................................................................ 2 Figure 3: Trends in international migration, Census 2011 ........................................................................................... 3 Figure 4: Population distribution by age group, Census 2011 and National Population Register ............................... 6 Figure 5: Population distribution by age in single years and sex, Census 2011 ......................................................... 7 Figure 6: Age ratios, Censuses 1996, 2001 and 2011 ................................................................................................ 8 Figure 7: UN Accuracy Index (UNI) by population group, Censuses 1996, 2001 and 2011 ....................................... 9 Figure 8: UN Accuracy Index by province, Censuses 1996, 2001 and 2011 ............................................................ 10 Figure 9, Figure 10 and Figure 11: Population age sex structure, 1996, 2001 and 2011 .......................................... 13 Figure 12: Under-five and infant mortality rates, 1998–2010....................................................................................... 15 Figure 13: Immigrants into South Africa, (2002–2011) ................................................................................................ 17 Figure 14: Total population and population without immigrants (2002–2011) ............................................................. 17 Figure 15: Distribution of population by functional age groups and sex ...................................................................... 18 Figure 16: Median age by population group ................................................................................................................ 19 Figure 17: Median age by province .............................................................................................................................. 20 Figure 18: Sex ratios by population group ................................................................................................................... 20 Figure 19: Total dependency ratios by population group ............................................................................................. 21 Figure 20: Total dependency ratios by province .......................................................................................................... 22 Figure 21: Child dependency ratios by population group ............................................................................................ 22 Figure 22: Child dependency ratios by province .......................................................................................................... 23 Figure 23: Old age dependency ratios by population group ........................................................................................ 23 Figure 24: Old age dependency ratios by province ..................................................................................................... 24 Figure 25: Policy wheels for creating and earning the demographic dividend ............................................................ 29 Figure 26: Population of South Africa, 1985 ................................................................................................................ 30 Figure 27: Population of South Africa, 2011 ................................................................................................................ 30 Figure 28: Trends in total fertility, all women aged 15–49, 1985–2011 ....................................................................... 31 Figure 29: Estimates of South Africa’s under-5 mortality rate compared with South Africa’s MDG target .................. 32 Figure 30: Life expectancy at birth by sex, 2002–2012 ............................................................................................... 32 Figure 31: HIV prevalence by sex and age, South Africa, 2012 .................................................................................. 34 Figure 32: Percentage distribution of deaths by age and year of death, 2008–2012 .................................................. 34 Figure 33: Secondary gross enrolment rate and enrolment ratios for children aged 7-13 years ................................ 35 Figure 34: Proportion of 15–17 year-olds who have completed Grade 7 and higher, ................................................. 36 Figure 35: Percentage distribution of headcount enrolment in public higher education institutions by major field of study, 2011 ................................................................................................................................................. 37 Figure 36: Trends in working age population (’000) .................................................................................................... 39 Figure 37: Percentage change in working age population among the youth and adults, 2008–2014 ......................... 39 Figure 38: Share of youth in working age population and in employment, 2008 and 2014 ......................................... 40 Figure 39: Unemployment rates 15-64, 2008-2014 ..................................................................................................... 40 Figure 40: Absorption rates of youth and adults in South Africa.................................................................................. 41 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa x List of abbreviations AIDS: Acquired Immune Deficiency Syndrome AfDB: African Development Bank ARSF: Age Ratio Score for Female ARSM: Age Ratio Score for Male ASSA: Acturial Society of South Africa CHET: Centre for Higher Education and Training CPI: Consumer Price Index DBE: Department of Basic Education DoH: Department of Health FAO: Food and Agriculture Organisation FET: Further Education and Training FETI: Further Education and Training Institute GER: Gross Enrolment Rate GDP: Gross Domestic Product HIV: Human Immunodeficiency Virus ILO: International Labour Organization IMR: Infant Mortality Rate MDGs: Millennium Development Goals NEET: Young people not in Education, Employment and Training NDP: National Development Plan NPR: National Population Register OECD: Organization for Economic Cooperation and Development PMTCT: Prevention of Mother to Child Transmission PIRLS: Progress in International Reading and Literacy Studies PPD: Partners in Population and Development SRS: Sex Ratio Score Stats SA: Statistics South Africa TIMMS: Trends in International Mathematics and Science Study TFR: Total Fertility Rate Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa xi UN: United Nations UNAIDS: United Nations Program on AIDS UNDP: United Nations Development Programme UNECA: United Nations Economic Commission for Africa UNICEF: United Nations Children's Fund UNI: United Nations Accuracy index US: United States USA: United States of America USAID: United States Agency for International Development WHO: World Health Organization Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 1 Chapter 1: Overview 1.1 Introduction The analysis of age-sex structure is one of the most basic ways of understanding population change over time. The distribution of a population by age and sex is very important for socioeconomic and demographic purposes. Simelane, (2002) in the study of demographic description of the 1996 population noted that age and sex analysis may be used to, amongst other variables, evaluate, adjust and reconcile the completeness and accuracy of census counts. In addition to these, the structure can be used to project the total population and its components. The age-sex distribution of a population is a cross-cutting variable used in planning as it is intrinsically linked to all aspects of the lifecycle, including childhood, education, marriage, childbearing, entry into the labour market, retirement, ageing, morbidity and mortality (Udjo, 2005). Information on the size, distribution and characteristics of a country’s population is essential for describing and assessing its economic, social and demographic circumstances and for developing sound policies and programmes. The statistics are used as a critical reference to ensure equity in the distribution of wealth, government services and funds among various regions and districts of a country to fund for education and health services (UN, 1998). The age and the sex structure of a population are the most important demographic characteristics captured by a population census. These variables however, can be altered by change in mortality, fertility and migration. For instance, births occur at age zero, hence the rise in fertility increases the proportion of children at younger ages and the growth rate. Conversely, when fertility declines, high proportions of children that stemmed from high fertility rates progress to youthful ages, which consequently lead to youth bulge. South Africa, relative to other African countries, achieved a decline in fertility for the past four decades (Caldwell and Caldwell, 1993 and 2003). Figure 1 provides trends in fertility rates from 1970–2010. Corresponding to the decline in fertility, the structure of the population indicates an increase in the proportion of the population aged 20–29 (see Figure 11). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 2 Figure 1: Trends in total fertility rate among women aged 15–49, (1970–2010) Interpolation 6 Udjo (2005) 5 Moultrie and Dorrington (2004) 4 Statistics South Africa 3 2 1 0 1970 1980 1990 2000 2010 On the other hand, mortality occurs at all ages therefore its effect depends on the age incidence of the change in the risk of dying. While South Africa, along with other sub-Saharan African countries had experienced a mortality decline, this was later reversed by the HIV/AIDS epidemic. Reniers, et al. 2011 argue, “HIV/AIDS presents the most drastic reversals in adult mortality that have been documented to date in Southern Africa in particular, the mortality gains made during the previous four decades have been wiped out in less than ten years”. South Africa has recorded an improvement in life expectancy since 2006 as shown in Figure 2. This mortality pattern relates to the decreasing pattern of child and infant mortality discussed in subsequent sections. Life expectancy Figure 2: Life expectancy in South Africa, 1996–2010 62 61 60 59 58 57 56 55 54 53 1996 1998 2000 2002 2004 2006 2008 2010 Year Source: Midyear population estimates, Statistics South Africa, 2011 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 3 Migration, like death can occur at any age, thus its effects on the structure depends on a particular age and sex of migrants. Figure 3 shows an increasing trend of in-migration into South Africa across time. Its impact is indicated in the Indian/Asian population group sex ratios of the population aged 20–39 that have increased from less than 100 in 2001 to over 113 in 2011 (Stats SA, 2012a). 160000 140000 120000 100000 80000 60000 40000 20000 0 Male 2011 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 Female 1985 Migrant population Figure 3: Trends in international migration, Census 2011 Year Age-sex data compiled from population censuses and surveys are often subject to a number of irregularities, especially in developing countries. Misreporting of sex is generally rare but age misreporting affects the quality of age data. Mason and Cope (1987) concluded that there are sources that could be attributed to age misreporting in censuses. Amongst them are ignorance of actual age, miscommunication between interviewers and informants and errors in recording or processing. Though the overall age-sex reporting in the country appears to have improved in 2011, there are variations when data is disaggregated by population group. Stats SA, (2012a) have published basic statistics pertaining to size, composition and structure of the population. This study builds on this theme by further attempting to identify specific demographic processes that could have impacted on the 2011 age and sex structure. This monograph is divided into 7 chapters. This chapter has provided an overview of the entire monograph. The 2nd chapter focuses on the assessment of the quality of age and sex data. Chapter 3 provides further insight into the relationship between demographic processes and population age-sex structure. The 4th chapter presents empirical findings of the change in population composition. Chapter 5 investigates further which demographic factor amongst fertility, mortality and migration could have significantly contributed to the current age and sex structure by employing various assumptions. Chapter 6 focuses on the issues pertaining to the demographic dividend. The last chapter presents the conclusions and discussions. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 4 Chapter 2: Assessment of data 2.1 Introduction As mentioned earlier, errors in age and sex are inherent. However, Pullum (2005) noted that the challenge is to separate irregularities from structural anomalies. Methods that detect age errors assume ‘normal’ age-sex distribution, hence the indices inform us how data diverge or conform to the assumed ‘normal’ distribution. If the pattern of age and sex distribution of the population is due to structural reasons such as migration or mortality, such inaccuracies should not be regarded as data errors. This section seeks to appraise the overall quality of age and sex data using various demographic techniques. 2.2 Imputation rates The first method used to assess the quality of the census age and sex data is to explore the edit rules that were applied to the raw data. Stats SA developed edit specifications that were implemented for each variable. During the editing process, the following five imputation flags were established: (1) No imputation (variables were left as in the raw data), (2) logical imputation from blank, (3) logical imputation from non-blank, (4) hot deck imputation from blank, and (5) hot deck imputation from non-blank. Logical imputations basically utilise other information in the household pertaining to a specific case to resolve the problem while hot deck imputation generates values using a pre-determined set which matches the profile of the affected case (UN, 2010). Table 1 below shows the extent of editing by type of imputation rules applied to age and sex data. Table 1 indicates that 79% and 98% of age and sex data, respectively, were not subjected to any imputations. Only 2% of cases on age were corrected using logical imputations. There is a marked 18% of data from non-blank that is imputed. This arises from the specification that derived age from year of birth. Imputation rates using hot-decking for both age and sex were very insignificant, for instance data on age indicate that hot-decking from non-blank is only 0,2%. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 5 Table 1: Imputation rates by age and sex, unadjusted Census 2011 Total population Frequency % No imputation 34 916 612 79,0 Logical imputation (from blank) 785 515 1,8 Logical imputation (non-blank) 7 948 793 18,0 Hot deck imputation (from blank) 425 737 1,0 Hot deck imputation (non-blank) 143 740 0,3 Total 44 220 397 100,0 No imputation 43 223 242 97,7 Logical imputation (from blank) 116 819 0,3 Logical imputation (non-blank) 191 281 0,4 Hot deck imputation (from blank) 662 080 1,5 Hot deck imputation (non-blank) 26 975 0,1 Total 44 220 397 100,0 Age Sex 2.3 Comparison between the National Population Register, 2011 and census, 2011 Numerous techniques of demographic analysis can be employed in the evaluation of age data. Amongst them is the direct comparison of census results with data from other demographic record systems, such as vital registration of births and deaths. In this case, the NPR that corresponds to the same population as enumerated during Census 2011 was considered as a viable source for comparison purposes. The register has records of South African citizens whose births were registered and individuals with permanent residence permits. It includes all births and excludes deaths as of 10 October 2011. Amongst its limitations are that it is affected by incompleteness of both birth and death registrations and it excludes non-citizens. Figure 4 shows the distribution of age of the population as recorded in Census 2011 and NPR. A look at Figure 4 indicates virtually the same pattern except for variations at some age groups. The figure shows that Census 2011 has relatively more children aged 0–4 than the NPR. This could be ascribed to the late registrations of births in the register that occurred 12 months prior to the Census 2011. There is a high number of people in age group 15–44 in the NPR than in Census 2011. Census counted all the people who were in the country on the Census night irrespective of whether a person is a registered or unregistered migrant while the NPR has information on citizens only. The variation between the two sources at elderly population age groups may be due to deaths that had occurred but had not been removed from the NPR. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6 Notwithstanding all this, it is imperative to note that the distribution evidenced in Census 2011 was noted in previous data collection events dating back to the 2007 Community Survey. Figure 4: Population distribution by age group, Census 2011 and National Population Register 2011 6000000 Population 5000000 4000000 3000000 NPR 2000000 census 2011 1000000 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85+ 0 Age in 5yrs Source: Own computation from Census 2011 and NPR data, 2011 2.4 Distribution of population by age in single years One most common error of age misreporting is age heaping and this is apparent when age is distributed in single years. The benefit of graphing the population by single years of age and sex is that occurrences of data heaping by age are made visible from the start. Findings in Figure 5 indicate fluctuations on the pattern at some ages for males and females. In addition to what was mentioned above, Shryrock and Siegel (1976) suggest that one of the key processes that underlie most age misreporting is the distortion of age to meet preconceptions or social norms about the relationship of age to other social characteristics or events. The results show troughs and peaks at some ages particularly those ending with 0 or 5. This may imply data problems in terms of age heaping and the overall quality of data. It is therefore essential to assess the extent of anomalies depicted above. The following analysis provides insight into age heaping and explores robustness of data on age and sex. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 7 Figure 5: Population distribution by age in single years and sex, Census 2011 700000 600000 Population 500000 400000 Male 300000 Female 200000 100000 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 0 2.5 Age ratios Age heaping on particular ages are more easily identified graphically than through calculated measures, however, age ratios can provide an indication of possible undercounts or displacements between age groups. The age ratio for a given age group is the ratio of twice the population in that age group to the sum of the population in each of the adjacent age groups (Moultrie, et al., 2013). If no irregularities are to be identified in the census data, the age ratios should equal 100. If the index is over a 100, it represents over-enumeration of the age groups. In the case of under-enumeration, the ratio is less than 100. A glance at Figure 6 indicates irregularities at ages 5–9, 10–14 in 2011 relative to previous censuses for both males and females. Stats SA (2012a) indicates that age groups 5–9 and 10–14 had the lowest undercount of 11,4% and 11,1% respectively. It might be that the cohorts have been affected by the mortality pattern that prevailed between 1996 and 2011, hence the deviation from 100 might not be considered to be data error. The deviation from standard index for ages 20–29 might also not be a problem of data. It is indicated that the country had positive migration rates compared to previous censuses (Stats SA, 2012a). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 8 Figure 6: Age ratios, Censuses 1996, 2001 and 2011 2.6 UN Accuracy Index Another way of evaluating the quality of distribution of a population by age and sex data is by employing the Age-sex Accuracy Index developed by the United Nations. This index establishes the accuracy of the population structure by sex and 5-year age groups (UN, 1955). Table 2 shows a UN joint score that is positioned at 18,2 in 2011 relative to 18,7 in 2001, which indicates consistency in the quality of data over time. Since the index is below 20, it can be concluded that data for 2011 are reliable. It is essential to note that the ARSF in 2001 (4,2) and 2011 (3,8) are less than those pertaining to males, signifying a smoother age pattern for females. The joint score is a combination of age ratio and sex ratio, therefore its value is determined by the characteristics of age ratio and sex ratio scores. There was no change in the SRS from 2001 to 2011. The pattern could be ascertained by a slight decline of UN joint score. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 9 Table 2: UN Accuracy Index, Censuses 1996, 2001 and 2011 Census year SRS ARSF ARSM UN Index 1996 3,3 4,1 3,7 17,7 2001 3,4 4,2 4,4 18,7 % Change 3,0 2,4 18,9 5,6 2011 3,4 3,8 4,1 18,2 % Change 0,0 -9,5 -6,8 -2,6 Figure 7 shows the UN Accuracy Index from 1996 to 2011 for population groups. What is strikingly notable is the increase in the index for the Indian/Asian population group. This signifies the worsening of the reporting of age-sex data amongst the Indian/Asian population group. The indices of coloured and white populations are below 20 across the years from 1996 to 2011, and this is indicative that age-sex data for these population groups seemed to be more accurately reported. Figure 7: UN Accuracy Index (UNI) by population group, Censuses 1996, 2001 and 2011 25 Index 20 15 10 5 0 Black African Coloured Indian/Asian White 1996 22,8 14,9 14,5 13,5 2001 21,2 14,8 16,6 17,4 2011 21,3 16,2 22,5 13,6 The results in Figure 8 indicate that Northern Cape amongst all provinces had lowest UNI for both 1996 and 2011, while Western Cape had the lowest only for 2001. On the other hand, the results indicate that although Eastern Cape, Limpopo and Mpumalanga had indices higher than 20, the quality of data improved over time. For instance, Limpopo had an index of 30,6 in 1996 that decreased to 23,4 in 2011. In contrast, Western Cape and Gauteng showed a worsening age and sex reporting with the Gauteng index increasing from 23,3 in 1996 to 28,3 in 2011. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 10 Figure 8: UN Accuracy Index by province, Censuses 1996, 2001 and 2011 35 30 Index 25 20 15 10 5 0 2.7 WC EC NC FS KZN NW GP MP LP SA 1996 13,4 27,8 13,8 23,7 23,2 21,5 23,3 28,7 30,6 17,7 2001 13,9 26,5 14,6 17,7 24,0 22,2 25 26,1 29,1 18,7 2011 19,5 21,0 12,7 19,6 21 21 28,3 22,4 23,4 18,2 Summary Overall, the analysis on assessment of data indicates that the quality of data pertaining to age and sex is reasonable, hence can be used for further analysis. However, findings observed in the UN accuracy indices of Indian/Asian and black Africans indicate some irregularities in the reported data. Age ratios index shows fluctuations in ratios across the years, particularly in younger and adult age groups. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 11 Chapter 3: What could have contributed to the shape of age and sex structure of the population, 1996-2011? 3.1 Introduction The age-sex structure refers to the distribution of age and sex within a population and it is determined by the history of births and deaths at each age as well as by the number of migrants by age that have entered and left the population. The processes of fertility, mortality and migration together determine not only the current size of the population but also the distribution of age and sex. A comparative analysis of sizes of specific age groups relative to the others or to the population as a whole is recognised as having an important role in the development process (Naire, 2011). The analysis of age and sex structure is one of the most basic ways of understanding population change over time (US Census Bureau, 2010). Obaid, (2007) noted the existence of demographic change between developed countries, where populations are ageing and many developing countries where populations continue to grow at rapid rates at young generations. High fertility and declining mortality were the leading components of demographic change of the 20th century but currently low fertility and ageing are the dominant demographic issues of the 21st century. A review of the demographic history of South Africa reflects two episodes that could change the structure of a population. South Africa recorded a fertility decline from 7,1 children per woman in the 1950s to 2,8 children per woman in 2007 which is matchless in any African country (Moultrie and Timaeus, 2003). In the midst of fertility transition, the sudden scourge of HIV/AIDS befell sub-Saharan Africa and that had a devastating effect on mortality. Findings of the antenatal clinic HIV survey conducted in 1998 (DoH, 1999) revealed that in 1990; 4,2 million people in South Africa were infected with HIV and less than 1% of women attending antenatal clinic were infected, however, the proportion increased drastically to 22,1% in 1998. Evidence from sub-Saharan Africa suggests that fertility is between 25% and 40% lower in HIV positive women than among uninfected women (Zaba and Gregson 1998, Ryder, et al., 1991). 3.2 The population structure of 1996, 2001 and 2011 Figures 9 to 11 indicate the population structure of South Africa for 1996, 2001 and 2011. In 1996, the structure reflects the shrinking base, suggesting a population that is experiencing a decline in fertility. This was evidenced by the study carried out by Udjo, (1997) where his findings indicated a decline of TFR from 4,2 in 1980 to 3,3 in 1996. As the population Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 12 progressed to 2001, a similar structure holds at the base, signifying the population that could be experiencing a decrease in the number of births. Moultrie and Dorrington (2004) explored fertility from Census 2001 and established a further decline in TFR from 3,23 in 1996 to 2,84 in 2001. Surprisingly, the 2011 age-sex structure exhibits an unusual pattern relative to the previous censuses. A glance at the structure indicates two fluctuations in age groups 0–4 and 5–14, the widening pattern of the structure at 0–4 that signifies the increase in the number of children aged 0–4 followed by the narrow pattern of children aged 5–14. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 13 Figure 9, Figure 10 and Figure 11: Population age sex structure, 1996, 2001 and 2011 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 3.3 14 Mortality, fertility and population age sex structure Most empirical findings of mortality fertility links have evolved around birth intervals, parental replacement and hoarding strategies and the continued pursuit is still an important debate left behind (Preston, 1978). Heuveline, (2003) suggested that one other possible way to understand the structure of the population is to establish trends of fertility in response to past mortality crises particularly where fertility has not been controlled. He found that in Cambodia, although there was a post-war baby boom, the post-war crisis rebound does not necessarily indicate an influence on fertility behaviour. Several studies indicate that when living conditions improve after a period of extreme hardship, for example, plague, epidemic war or famine, fertility often, but not always recovers temporarily (Lindstrom and Berhanu, 1999). It is because that if fewer births occur during a crisis, an unusual number of women are prone to the risk of conception that results in record number of births one to two years later. Lee, (1997) suggested that post-crisis fertility are driven by marital fertility surge that result from an increase in the number of susceptible women following the absence of conception during a crisis. Bongaarts and Watkins, (1996) argued that fertility transitions occurred in different demographic and economic contexts; however an impressive mortality decline constitutes an aspect of changing environment in which transitions have occurred. Can this typical response explain the increase in the number of children five years prior to Census 2011 in South Africa? Extremely high adult mortality levels in some of the south eastern African countries are not the sole result of the HIV/AIDS epidemic, but due to the triple burden of infectious and chronic diseases, as well as external injuries (Reniers, et al., 2011). In Southern Africa in particular, the mortality gains made during the previous four decades have been wiped out in less than ten years (ibid). The trend in IMR as per MDG report 2013 as shown in Figure 12, suggests an increase from 26 infant deaths per 1 000 live births to 48 infant deaths per 1 000 live births from 1998 to 2007 and a decrease since 2007 to 2010. In 2010, IMR was at 38 infant deaths per 1 000 live births. A similar pattern holds for under-five mortality rate. HIV/AIDS prevalence in pregnant mothers increased significantly from 1999. Mother-to-child transmission decreased from 8% to almost 3% in 2011 (Sherman, et al., 2012). The country implemented a PMTCT programme in 2002 and a comprehensive national antiretroviral programme in 2004 and has seen an improvement in the quality and practice (Barron, et al., Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 15 2013). The programme formed part of the 2003 National Strategic Plan and included increased provision of nevirapine, the extension of treatment to all HIV-infected pregnant mothers and their children and the expansion of related health-care services, such as “voluntary counselling and testing”, (ibid). The guidance and recommendations have changed over time. There are many plausible factors that could have shaped the structure of the population from 1996–2011. Could the increase in mortality from around 1998 to 2006/7 possibly be due to the high infant mortality and partly due to the high mother–to-child HIV transmission contributed to the current age and sex structure? The decline in fertility due to the association between fertility and HIV/AIDS could have also to some degree contributed to the shape of the structure. Other authorities, however have not found evidence that HIV/AIDS affected fertility (Fortson, 2009). Linking mortality pattern to the structure, particularly at younger ages could suggest that fluctuation in the mortality pattern could have, to a certain extent, contributed to the decreasing number of cohort 5–14. Lee, (2003) indicates that reduction in infectious and contagious diseases as well as improvement of health increase the life expectancy. Figure 12 shows the infant mortality and under-five mortality from 1998–2010. The trend reflects an increasing pattern from 1998 to 2007 that then declines towards 2010. 80 70 60 50 40 30 20 10 0 IMR 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 U5MR 1998 Mortality rate Figure 12: Under-five and infant mortality rates, 1998–2010 Year Source: Stats SA, MDG country report, 2013 3.4 Change in the proportion of children (0–4) relative to women (15–49) Change in the age structure and particularly fluctuations in the number of women in the reproductive age group, affects fertility levels. Table 3 indicates that the number of children in the age group 0–4 (1,05) has slightly increased from 2001 to 2011 relative to women aged 15– 49 (-0,34). This pattern suggests a number of underlying phenomena, amongst them are that the actual number of children born per woman may have increased despite the declining fertility Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 16 (Retherford and Thapa 1998). Further, the declining mortality rates might have improved the survival rates, that led to the increased population aged 0–4 and lastly, the improvement of data quality could decrease under-reporting of children, and therefore increase the proportions at this age group (Subedi, 1998). Stats SA (2004 and 2012b) indicated that net undercount rate of children under-five improved slightly from 16,8% in 2001 to 15,1% in 2011. Table 3: Proportion of children (aged 0–4) relative to women (aged 15–49), 2001 and 2011 2001 2011 2001 2011 Percentage difference Number Number % % % 0-4 4 449 816 5 685 452 9,9 11,0 1,1 15-49 12 641 970 14 423 494 28,2 27,9 -0,3 Age group 3.5 Migration and population age-sex structure Migrants tend to be a selected group of individuals when compared to both the population of origin as well as the population of destination (Newell, 1988). Migration selectivity is as a result of the propensity of certain age groups and sex to migrate more than other ages. Researchers reveal that age specific schedules of migration peak in young children (resulting from children migrating with their parents), then migration rates decrease in teenage years and sharply increase in early adult ages and decrease thereafter (Rogers,et al., 2010). Figure 13 presents the structure of immigrants into South Africa between 2002 and 2011. As expected, the majority of immigrants were males within economically active population. In Figure 14, the difference between the shaded bars and the line bars is the contribution of immigrants to the total population of the country. The findings reveal that nationally, the contribution of the number of immigrants to the population structure was insignificant; however the effect is noticeable in the Indian/Asian population group (Stats SA, 2012a). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 17 Figure 13: Immigrants into South Africa, (2002–2011) 80+ 75-79 70-74 65-69 60-64 55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19 10-14 5- 9 0- 4 Female Male 250000 200000 150000 100000 50000 0 50000 100000 150000 Figure 14: Total population and population without immigrants (2002–2011) 80+ 75-79 70-74 65-69 60-64 55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19 10-14 5- 9 0- 4 Male 4000000 3000000 2000000 1000000 3.6 Female 0 1000000 2000000 3000000 4000000 Summary From the findings it could be suggested that the shrinking of the population aged 5–9 and 10–14 coincided with the increased infant and child mortality from 1998 to 2007. Congruent to child mortality decline from 2007, the population structure in 2011 indicates an increasing population aged 0–4 relative to 2001, the linkage between the two demographic processes could suggest that the improvement of the healthcare system might have resulted in the survival of children 0– 4. One likely factor could be the improvement of data collection in this age group. Migration did not show any significant effect on the unusual pattern of Census 2011 population structure. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 18 Chapter 4: Empirical findings from Censuses 1996, 2001 and 2011 4.1 Introduction South Africa has led the fertility transition in Africa, with all the populations evidencing fertility decline from 1965, followed by other parts of Southern Africa. In the midst of declining fertility, the country was confronted with a scourge of HIV/AIDS. Subsequent to these changes, it is vital to investigate the impact of the changes in the population composition. Although some indicators on population structure and composition were published in 2012, analysis of the population age-sex structure was undertaken to provide an insight of the demographic transition over time. The following section attempts to investigate the extent to which these demographic changes affected the population from 1996 to 2011. Different summary measures and measure of central age are used to describe the population composition and measure the shifts in the population age structure. 4.2 Observed indicators from Censuses 1996, 2001 and 2011 4.2.1 Broad age groups Figure 15 indicates the decreasing trend in the proportion of male and female population aged 0–14 over time. The proportion for males decreased from 35,6% in 1996 to 30,3% in 2011 while that for females decreased from 33,2% in 1996 to 28,1% in 2011. The proportion for the economically active population (age group 15–64) remained relatively consistent, with the proportion for males and females increasing from an average of 61% in 1996 to 65% in 2011. % population Figure 15: Distribution of population by functional age groups and sex 70 60 50 40 30 20 10 0 0-14 15-64 65+ Male Female 1996 35,6 33,2 60,5 61,1 3,9 5,7 Male Female 2001 33,4 30,8 62,8 63,2 3,8 6,0 Male Female 2007 32,1 30,0 63,8 63,4 4,1 6,6 Male Female 2011 30,3 28,1 65,6 65,4 4,1 6,5 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 4.2.2 19 Median age The median age of the population is defined as that age that divides the total population in half. A population may be described as young if the median age is below 20, intermediate if the median age lies anywhere from 20 to 29 and old if the median is over or equal to 30 years (Hobbs, 2004). 4.2.2.1 Median age by population group According to Figure 16 the median age suggests that the country has an intermediate median age, this means that the country is neither young nor old. Nonetheless, there are disparities by population groups. The white population group has consistently shown a higher median age that is between 33 and 39 over time compared to other population groups. This is indicative of a population that is ageing. The other population groups have median ages that reflect populations in the intermediary stage. Median age Figure 16: Median age by population group 45 40 35 30 25 20 15 10 5 0 White Indian/Asian Coloured Black African RSA 1996 33 26 23 21 22 2001 35 29 24 22 23 2011 39 32 27 24 25 4.2.2.2 Median age by province Figure 17 shows disparities between provincial median ages. Gauteng and Western Cape are the two provinces with the highest median ages of 28 compared to all other provinces. Stats SA (2012a) revealed that Western Cape and Gauteng had the highest in-flow of migrants between 2001 and 2011 and it is likely that the median ages of these provinces increased due to age and sex selectivity of migration. In 2011, the median ages for all provinces are above 20, with Limpopo having the lowest median age at 22 years. This is followed by the Eastern Cape and KwaZulu-Natal with median ages of 23 years. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 20 Figure 17: Median age by province 30 Median age 25 20 15 10 5 0 EC FS GP KZN LP MP NW NC WC RSA 1996 19 24 27 21 17 21 22 24 26 22 2001 20 24 27 21 19 21 24 25 26 23 2011 23 26 28 23 22 24 26 26 28 25 4.3 Overall sex ratios Sex ratios provide the number of males for every 100 females. It shows the predominance of males over females and if it is less than 100, then the reverse is true. Traditionally, sex ratios at birth are high and decrease steadily as age increases. The sex ratios have always been favourable for females. From the results in Figure 18, South Africa has consistently had a lower sex ratio ranging from 93 males per 100 females in 1996 to 95 male per 100 females in 2011. There is a stable sex ratio for black African, coloured and white population groups across the three censuses ranging between (92 males per 100 females) and (95 males per 100 females). On the other hand, the Indian/Asian population group shows a noticeable increasing sex ratio from 96 males per 100 females in 1996 to 101 males per 100 females in 2011. Figure 18: Sex ratios by population group 102,0 100,0 98,0 Sex Ratio 96,0 94,0 92,0 90,0 88,0 86,0 Black African Coloured Indian/Asian White RSA 1996 92,0 94,0 96,0 95,2 92,7 2001 91,1 92,6 95,6 94,0 91,7 2011 94,4 93,3 100,6 94,8 94,8 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 4.4 21 Dependency ratio The dependency ratio is an indicator of potential dependency burden of children and the elderly on those who are of economically productive ages in a population. 4.4.1 Total dependency ratios by population group The results in Figure 19 indicate a decrease of total dependency ratio from 64,4 in 1996 to 52,7 in 2011. This means that in 2011, every 100 persons of economically active population (15–64), were expected to cater for 52,7 of which 44,5 were children and 8,2 were adults (See Figures 21 and 23). Total dependency ratios have been declining for all population groups except for the white population. The analysis of this indicator reflects the relationship between dependency ratios and total fertility rates in various sub-population groups. Figure 19: Total dependency ratios by population group 4.4.2 Total dependency ratios by province Figure 20 suggests that across the years, Limpopo and the Eastern Cape are the provinces with the highest dependency ratios compared to other provinces. This is expected due to the outflow of migrants to other provinces within the country. All the other provinces, except Gauteng in 2001 and 2011, suggest a decline in total dependency ratios over time. Gauteng also has the lowest total age ratios compared to all other provinces, this also can be explained by the high influx of people from other provinces and countries who increased the number of the working age population in the province. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 22 Dependency ratio Figure 20: Total dependency ratios by province 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 FS GP KZN LP MP NW NC WC RSA 1996 82,7 56,4 42,9 68,9 92,4 70,7 63,2 65,9 52,4 64,4 2001 75,0 55,4 38,7 65,4 81,0 67,0 57,0 60,1 48,2 58,7 2011 66,0 52,9 39,0 58,5 67,3 56,0 54,5 55,7 45,0 52,7 4.4.3 EC Child dependency ratios by population group Findings depicted in Figure 21 indicate that nationally, the child dependency ratio has been declining. A similar pattern is noted in population groups with the white population having the lowest ratio. It is interesting to note that both the Indian/Asian and the white populations exhibit child dependency ratios that are consistent with those observed in more developed regions, while black African population ratios are comparable to those seen in less developed regions (Rowland, 2003). Dependency ratio Figure 21: Child dependency ratios by population group 4.4.4 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 Black African Coloured Indian/Asian White Total 1996 61,6 52,9 40,4 31,4 56,4 2001 55,2 47,3 32,7 27,2 50,9 2011 47,8 42,4 27,5 24,3 44,5 Child dependency ratios by province Provincial distribution of child dependency ratio in Figure 22 indicates that while Limpopo and Eastern Cape have the highest child dependency ratios, Gauteng and Western Cape had the lowest ratios. The pattern revealed by child dependency ratios corroborates with fertility schedules across the country. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 23 Figure 22: Child dependency ratios by province 4.4.5 Old age dependency ratios by population group Old age dependency also provides an indication of ageing in a population. The results in Figure 23 suggest that old age dependency for the country seems to be consistently around 8. The old age dependency ratio for the white population is the one that is the most striking (increasing from 15 in 1996 to 21 in 2011). Amongst all population groups, black African population group old age dependency ratios have shown a steady decrease over time. Figure 23: Old age dependency ratios by population group 4.4.6 Old age dependency ratios by province In Figure 24, Limpopo and the Eastern Cape provinces have the highest old age dependency ratios. Gauteng amongst all the provinces indicated the lowest old age dependency ratio across the years. In terms of migration, Limpopo and Eastern Cape are the most sending provinces. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 24 The age selectivity theory of migration could have contributed to the age composition in each province. Figure 24: Old age dependency ratios by province 4.5 Summary The findings indicate that there have been changes in the population age-sex structure since 1996 to 2011. The distribution of population by broad age groups shows a decreasing child population (0–14) from 1996 to 2011. Notwithstanding the gradual increase of the median age from 1996 to 2011, the population of South Africa is still in an intermediary stage with the median age that is positioned between 20 and 29. Across the years, the median age of the white population signifies a population that is ageing, whilst that of the black African population is characterised by a young population. Sex ratios have been increasing over time, however nationally; female population still exceeds male population. The Indian/Asian population sex ratio stands at almost 101, indicating a population with a slightly high proportion of males than females. While total dependency ratios showed a declining trend over time, the black African population had the highest total dependency ratios across the years. Provincially, Limpopo and Eastern Cape had the highest child and old age dependency ratios relative to other provinces. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 25 Chapter 5: Population age-sex structure scenarios 5.1 Introduction Given the composition of the population and its development over time, this section attempts to investigate the main demographic process that could have shaped the structure of the population from 1996 to 2011. To be able to do that, three scenarios of projecting the population from 1985 to 2011 were performed. The method is employed to find out what the size and the structure of the population would be if each of the demographic process is left to be constant. The hypothesis is that, if the output of the demographic process differ from the reported profiles then that process contributed to change in the structure of the population. Otherwise, if it mimics the reported profile, then that process did not affect the population structure. The scenarios are based on the following assumptions: The first scenario is what the structure of the population would be with the assumption that TFR did not change from 1985. In the second scenario, we determine what the shape of the structure would be with an assumption of constant mortality. In the last scenario, we project the population using mortality and fertility estimates over time and set migration to be constant. 5.2 Projected scenarios Input data for mortality indicators used in the analysis are from the mid-year population estimates of 2011 while TFR and migration rates employed are from censuses. Tables 4 and 5 show the results of all the scenarios and reported figures from censuses. It is evident that if fertility remains constant over time from 1985, the population size diverges markedly from the reported one. The effect is more pronounced in 2011 where the projected population is positioned at 57 million if fertility was assumed not have changed. The pattern is suggestive that the decline in fertility made a major effect in the evolution of the population structure. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 26 Mortality seemed to be second in shaping the structure of the population in 2011. As indicated in Table 4, when life expectancy did not vary from 1985, the projected population indicated lower population size than the reported one. Regardless of the sudden increase in mortality rates between the late 1990s and the mid-2000s, the country encountered an improvement in life expectancy at birth over time, hence the population size with variation of rates in mortality exceeds the one with constant mortality except for 1996 where the reported and the projected populations were almost the same. UNAIDS, (2014) noted a gradual increase in life expectancy at birth in South Africa from 60,6 years in 1985 to 62,0 years in 19971 which dramatically decreased to 52,1 years in 2004. By 2011, the life expectancy was at 58,1 (Stats SA, 2013). The analysis in Figures 13 and 14 above indicate that migration appeared to have not altered the population structure. The reported population size and the projected one in the three censuses points are virtually the same despite constant migration. The implication is that apart from the increasing inflow of migrants into the country over time (see Figure 3), its effect on the population structure is insignificant. The argument on the effect of fertility and mortality is likewise demonstrated in Table 5 below. With constant fertility, the projected proportion of children in the age group 0–14 is higher than the reported population in all three points. The effects still hold when mortality is kept constant, with considerable variations between the reported and projected populations aged 0–14 in 1996 and 2001. The median ages and child dependency ratios in Table 5 confirm that fertility is the main demographic process that shaped the structure from 1996 to 2011. When fertility remained unchanged the population appeared to be very young with the median ages of 21 across the three years and the projected child dependency ratios indicate an increasing trend over time. Table 4: Projected and reported population size, 1996, 2001 and 2011 Demographics Census 1996 Census 2001 Census 2011 40 583 572 44 819 777 51 770 560 Fertility constant 42 099 355 46 865 846 56 969 797 Mortality constant 41 024 712 44 146 836 49 175 367 Migration constant 41 298 329 44 675 621 49 709 343 Reported population size from censuses 1 Spectrum UNAIDS, 2014 Life expectancy figures Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 27 Table 5: Projected and reported median ages and dependency ratios, 1996, 2001 and 2011 Indicators Fertility constant Median age Projected Mortality constant Migration constant Reported Projected Reported Projected Reported 1996 21 22 21 22 21 22 2001 21 23 22 23 22 23 2011 21 25 23 25 23 25 Reported Projected Reported Projected Reported Child dependency ratio Projected 1996 62,6 56,4 59,6 56,4 59,8 56,4 2001 64,0 50,9 56,7 50,9 57,3 50,9 2011 66,6 44,5 51,7 44,5 53,1 44,5 5.3 Summary Fertility, then mortality seem to be the contributing demographic processes that changed the population age and sex structure over time. If fertility is constant, the proportion of children aged 0–14 increased markedly, thus increasing the size of the population, far above the reported figures. The projected decreasing median ages affirm that fertility transition altered the structure of the population. Mortality to a certain extent did alter the population structure particularly in the children population. If assuming no mortality change, the projected total population size decreases considerably compared to the reported one. Migration as discussed earlier did not have any impact on age-sex distribution over time. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 28 Chapter 6: Demographic dividend 6.1 Introduction One of the developmental challenges that are facing the world is to create an environment of economic growth. The South Asian “Asian Tigers“ such as Hong Kong, Korea, Singapore and Taiwan came up with a comprehensive way to make this growth a reality and this was triggered by what was known as the demographic dividend. It is the accelerated economic growth that begins with changes in the age structure as it transition from high to low fertility and mortality rates and the subsequent change in the age structure (Gribble and Bremner, 2012). According to Ross (2004), the demographic dividend occurs when falling birth and mortality rates change the age distribution so that fewer investments are needed to meet the needs of the youngest age groups and resources are released for investments in economic development and family welfare. The generations of children born during periods of high fertility finally leave the dependent years and enter the labour market, however, good policies during demographic transition are required to educate and train them so that they become skilled, educated and contribute to a productive labour force which can boost the economy. A country can make use of the window of opportunity for rapid economic growth if the relevant social and economic policies are directed towards health, education, governance and economy (UNECA, 2013a). The Asian Tigers invested heavily in health, family planning, education and economic reforms of their young population. According to estimates by Williamson (1997), since the 1970s, between a quarter and a third of economic growth in the South Asian countries could be attributed to the demographic dividend. However, the demographic dividend is not permanent and the window of opportunity is limited. The large young adults will progress to the elderly population followed by a cohort of fertility decline. This change will be followed by an increase in the elderly dependency ratio and the pressure will be on caring for the needs of the elderly. On the other hand, the dividend is not automatic, it requires a set of investments and policy commitments. Some countries will take advantage of the released resources and some will not until the window of opportunity closes (Ross, 2004). The proportion of the world large population between the ages of 12–24 years living in Africa is expected to rise from 18% in 2012 to 28% in 2040. The UN’s latest population projections put Africa at 2 billion people in 2040. For many African countries, the accelerated economic growth of the demographic dividend remains a possibility. Amongst the challenges that threaten the process are high fertility rates, poor governance and political instability (AFIDEP, 2013). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 29 Figure 25: Policy wheels for creating and earning the demographic dividend Source: Gribble & Bremner, 2012 The above model in Figure 25 shows that for a demographic dividend to occur one needs much more than just an appropriate age structure. Investment in health, education and economic development are required along with adherence to corporate governance principles in order for a nation to derive benefits from a demographic dividend. This is what the chapter attempts to show. 6.2 The demographic dividend is delivered through several mechanisms 6.2.1 Change in age structure The accelerated economic growth of the demographic dividend should start with prioritising strategic investments to lower fertility and child mortality. As the total fertility decreases, the proportion of children aged 0–14 begins to decrease relative to the population aged 15–64. The decline in fertility will reduce age dependency, economic dependency and lead to a greater resource mobilisation and finally improved socio-economic status (Eloundou-Enygue, 2013). This demographic transition does not automatically accelerate economic growth. In subSaharan countries and elsewhere, where fertility is declining, it is vital to establish an enabling policy environment for children and youth to benefit from education, health, employment opportunities and livelihood creation to become productive adult workers in the near future (USAID, 2012). Until countries address their extremely young age structure, they will not achieve their full potential for economic growth that comes through the demographic dividend. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 30 For countries to realise a demographic dividend, they need to make investments that lead to having a smaller school-age population and a larger working-age population (UNECA, 2013b). Figures 26 and 27 present the population structure of 1985 and 2011. The structure transitioned from the ‘young’ population structure characterised by high mortality and fertility rates to a mature one with declining mortality rates. As the cohort matures, the population represents an age structure with a high proportion of young people relative to children. According to Bloom, et al., (2003) the concept of demographic dividend explains the possible economic consequences of the excess population particularly in the working age group. As alluded earlier, given the right policy environment, countries can benefit from the demographic dividend. The policy reviews should be aimed at the following areas: public health, family planning, education and economic policies that promote labour-market flexibility and openness to trade, and savings (Urdal, 2011). Figure 26: Population of South Africa, 1985 Source: Acturial Society of South Africa (ASSA), 2008 Figure 27: Population of South Africa, 2011 Source: Statistics South Africa, 2012 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6.2.2 31 Change in fertility South Africa witnessed fertility transition from the 1960’s. Figure 28 suggests that fertility is still declining to date. The rate of fertility in South Africa is among the lowest in sub-Saharan African countries (Moultrie and Timaeus, 2003). In addition, life expectancy increased from 57,1 years in 2009 to 61,3 years in 2012 (Dorrington et. al, 2014). Adult mortality shows a decreasing pattern from 46% in 2009 to 38% in 2012 (ibid).The transition brought a change in the population age structure with fewer young children relative to working age population. Figure 28: Trends in total fertility, all women aged 15–49, 1985–2011 Source: Udjo (1997, 1998); Dorrington et al. (1999); Moultrie and Dorrington (2004); Udjo, (2014); Sibanda and Zuberi, (1999) and Calculated estimates from Census 2011 6.2.3 Infant and child mortality Secondly, governments need to invest in reducing child mortality in order to produce a healthy potential future workforce. Although South Africa has made progress in reducing child mortality, the rate is much higher than the global average that stood at 51 deaths per 1 000 live births (UNICEF, 2013). If the country continues to invest in immunisation to ensure children survival, this will give a greater impetus for reduction of fertility rates. When families are confident that their children will survive, then they will give birth to fewer children. Figure 29 indicates under-5-mortality projections from different models. South Africa did not reach the MDG target of 20 deaths per 1 000 live births by 2015, however all the projections indicate a decreasing under-5-mortality except for the trend projections of Grenne and Gakusi. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 32 Figure 29: Estimates of South Africa’s under-5 mortality rate compared with South Africa’s MDG target Source: Nannan et.al, 2012 6.2.4 Life expectancy The level of life expectancy is influenced by fluctuations of child and infant mortality. People tend to lose years of life if they die in their early stages of life. It is apparent that the gradual decrease of infant and child mortality has, amongst other factors, contributed to an increase in life expectancy. As presented in Figure 30, the improvement in life expectancy began to be evident from 2007 onwards. life expectancy Figure 30: Life expectancy at birth by sex, 2002–2012 64,0 62,0 60,0 58,0 56,0 54,0 52,0 50,0 48,0 46,0 44,0 Male 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 50,0 49,5 49,3 49,4 50,2 51,7 53,3 54,6 55,5 56,1 56,8 Female 55,2 54,4 53,9 53,6 54,6 56,1 57,6 58,8 59,5 60,0 60,5 Total 52,7 52,1 51,7 51,6 52,5 54,0 55,5 56,8 57,6 58,1 58,7 Source: Stats SA, Mid-year population estimates 2013 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6.3 33 Investing in health Evidence from Arora, (2001) and Fogel, (1990)] suggests that better health facilities improve economic production. For a country to have a very productive labour force, it does not only need to be educated and skilled, but also to have a healthy population. More critically, countries need to invest in child nutrition as it affects how well children can learn and also impacts the quality of the future labour force, some examples are: ensuring that infants receive good medical care, protecting women’s reproductive health and stressing the health of children and teenagers (UNECA, 2013a). As these children are growing to adolescent age group 10–19 (WHO), they should have access to reproductive health services to avoid, amongst others, unwanted pregnancies, HIV and sexually transmitted diseases. Investment and promoting healthy life styles during young adulthood ensure transition into healthy adults who can participate productively in the economy (Megquier and Belohlav, 2014). The question that remains is whether the country has invested on the health of the generation of high fertility era to prepare them to participate actively in the economy as they reach adulthood stage of life. The leading causes of youth mortality worldwide are among others, injury, respiratory infections, HIV/AIDS and meningitis (USAID, 2012). According to the 2014 Human Sciences Research Council National HIV Prevalence, Incidence and Behaviour Survey, South Africa has the highest HIV/AIDS infections in the world estimated to be 6 300 000 (per total population). The HIV/AIDS prevalence has also increased from 10,6% in 2008 to 12,2% in 2012 (ibid). This number is projected to rise to 7,3 million by 2030. Figure 31 indicates that the highest prevalence is more pronounced in population between the ages of 20 and 44. The impact of HIV/AIDS is depleting the working-age population. The total number of persons living with HIV/AIDS increased from an estimated 4,21 million in 2008 to an estimated 5,38 million in 2011. The estimated prevalence of persons aged 15–49 has increased steadily, but has been stable for the past ten years with an estimate of 16,0% in 2001 to 16,6% in 2011 (Stats SA, 2011). The population of South Africa has a proportionately high number of people of working age group and a low number of children and elderly people, the challenge is that high unemployment and HIV/AIDS have produced many more dependents than would have been the case (NDP, 2011). Statistically the country is in a position to benefit from a demographic dividend, however, the challenges of joblessness and HIV/AIDS are major burdens on working age population, hence preventing South Africa to maximise from the benefits of the dividend. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 34 40 35 30 25 20 15 10 5 0 36 28,4 28,8 31,6 28 25,6 19,7 17,4 17,3 15,8 15,5 14,8 13,4 9,7 0-14 5,5 4,6 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 male female male female male female male female male female male female male female male female male female 0,7 2,4 female 5,6 5,1 male female 2,3 2,4 male HIV Prevalence Figure 31: HIV prevalence by sex and age, South Africa, 2012 60 + Source: HSRC, 2012 The age-specific deaths in South Africa have been decreasing over time as seen in Figure 32; but the peak of deaths is still among the economically active population. It is well documented that a population’s health status affects the country’s economic performance in terms of economic growth and social development (Arora and Mayer, 2001). Figure 32: Percentage distribution of deaths by age and year of death, 2008–2012 10 9 8 7 6 5 4 3 2 1 0 0 1-4 5-9 2008 7,7 2,6 0,8 10-14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 0,7 1,5 4,0 7,1 9,1 9,0 7,8 7,1 6,4 6,1 5,3 5,7 5,0 5,0 3,9 2009 6,8 2,2 0,8 0,8 1,5 3,8 6,8 8,5 8,6 7,6 7,2 6,6 6,4 5,8 5,8 5,4 5,3 4,3 2010 6,3 2,4 0,8 0,8 1,5 3,7 6,6 8,0 8,2 7,5 7,2 6,8 6,4 6,4 5,8 5,9 5,1 4,8 2011 5,6 2,0 0,9 0,8 1,5 3,4 6,1 7,3 7,8 7,1 7,0 6,9 6,8 6,9 6,1 6,5 5,5 5,2 2012 5,6 2,2 1,0 0,8 1,5 3,3 5,9 7,0 7,5 6,9 6,7 6,9 6,8 7,1 6,3 6,6 5,8 5,5 Source: Stats SA (2014d), Mortality and causes of deaths in South Africa, 2012: Findings from death notification. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6.4 35 Education For a country to take advantage of a window of opportunity brought about by a change in the population age structure, the quantity and the quality of education needs to be improved. Links between education and economic development are well established. At this stage the goal is to provide quality education that produces internationally competitive and life journey graduates (Eloundou-Enygue, 2013). Secondary education, tertiary education and vocational training need to be expanded and made relevant in order for youth to develop the skills required for productive employment (PPD, 2011). According to the South African Schools Act, (1996), school is compulsory for children aged 7– 15 years. The Education law Amendment Bill of 2002 set the age admission into Grade 1 as the year in which the child turns seven (DBE, 2010). The compulsory school attendance band is compulsory from grade 1–9 for all learners. From Grade 10–12, learners may decide to follow a different path included in FET (DoE, and School Realities, 2009). One of the goals of DoE is to ensure that all children have access to complete free and compulsory primary education of good quality. Figure 33: Secondary gross enrolment rate and enrolment ratios for children aged 7-13 years Source: DoE, Education Statistics in South Africa: 2002-2007, DoE, School Realities: 2008-2009 and General Household Survey 2002– 2009, Statistics South Africa Results in Figure 33 show that the enrollment ratios for the 7–13 year-olds are already high with an increase of about 2% points from 2002–2009. The data further suggest that, South Africa is characterised by high enrollment rates in secondary schools with GER (Gross enrollment rate) that is at 85% in 2009. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa Figure 34: 36 Proportion of 15–17 year-olds who have completed Grade 7 and higher, % Completed Grade 7 and higher 2002–2009 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 2002 2003 2004 2005 2006 2007 2008 2009 15 year olds 68,7 68,6 71,8 74,6 78,0 79,0 78,5 79,9 16 year olds 78,6 81,6 81,9 84,8 84,6 86,7 86,2 88,3 17 year olds 85,7 86,7 88,7 90,0 90,9 91,5 91,0 91,8 18 year olds 89,6 90,2 90,0 90,2 91,7 93,2 92,1 93,8 Source: Statistics South Africa, General Household Survey, 2002–2009 The picture depicted in Figure 34 indicates that South Africa has made some strides in attempting to achieve MDG 2 – that of achieving universal primary education. The proportions of learners aged 18 who have completed primary education is on average about 92% and has been steadily increasing over time. South Africa fares fairly well by international comparisons in terms of educational attainment up to grade 11. The rate of completion of Grade 12 is low by international standards, however, if it can be increased from about 40% to 50% it could match the rates of countries like Taiwan (van der Berg, et al., 2011). Although the matric pass rate dropped from 2013 (78,2%) to 75,8% in 2014, the pass rate shows an increasing trend from 67,8% in 2010 to 75,8% in 2014. Despite these indicators, South Africa still has a high unemployment rate amongst the youth that is at 36,1% in 2014 relative to 15,6% of adults in the same year (Stats SA, 2014b). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 37 Figure 35: Percentage distribution of headcount enrolment in public higher education institutions by major field of study, 2011 35 30 28,1 30,8 23,5 25 17,6 20 15 10 5 0 Science, Engineering and Technology Business and Management Education Humanity and Social Science Source: Department of Higher Education and Training, 2013 On completion of secondary education, a learner generally progresses to tertiary institution. Figure 35 indicates that the majority (30,8%) of students enrolled in public higher institutions were in the field of Business and Management, followed by Science Engineering and Technology (28,1%). The South African education system can now be recognised to have attained near universal access, however the system remains largely in a poor state of affairs 2. In the past five years the country has seen the doubling of the education budget but still it has failed to reverse its low exam results and the standard of teaching3. If the country is to contribute to the economy in a meaningful way, serious interventions are needed to improve the quality of teaching and learning. In recent times, the quality of education has become uppermost in people’s minds, especially in the face of increasing unemployment and inequalities. South Africa participated in international tests of educational achievements. Amongst them are TIMMS and PIRLS. Findings from TIMMS indicate that between 2002 and 2011 the performance of Grade 9 pupils in both Mathematics and Science increased by 67 points and 64 points respectively. However, it must be noted that South Africa’s overall performance is still the worst of all middle-income countries that took part in the tests (Spaull, 2013). 2 It isn’t about money, 2011. The Education Fix, 7 April. Available at: http://www. Visualeconomics.com/ how- the – countries- spend- their – money/ 3 South Africa teacher strike shuts schools, compounds educational crisis, 2011. Bloomberg News, 31 August. Available at http://www.bloomberg.com/news/2010 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 38 In 2003, DoE found out that 61% of grade 3 learners could not read and write at the appropriate level for their age4. South Africa was also the lowest performing participant in Mathematics and Science in the 2003 trends and international maths and science study. 6.5 Employment South African real domestic product increased by only 0,6% quarter-on-quarter in the second quarter of 2014 (Stats SA, 2014b). South Africa’s rate of economic growth, as measured by real GDP increased from an average of 2,7% per annum during 1997–2003 to 5,2% per annum during 2004–2007, but decreased to 2,2% per annum during 2008–2013 (ibid). On the other hand, results presented in Figure 39 over the period 2008 to 2014, suggest that the unemployment rate among youth has been consistently higher than that of adults by a large margin. There are however several issues aggravating the situation. One such issue is the skills shortage in major industries. Is South Africa producing the necessary skills relevent to labour market in order to accelerate the economy? AfDB, OECD and UNDP (2012) observed that high vacancy rates in the presence of large scale unemployment confirm the existence of skills mismatches and are especially substantial in middle income countries. Although there are large numbers of unemployed young people and a constantly growing labour supply, many enterprises in Africa struggle to fill open positions. In Egypt, for instance about 1,5 million young people are unemployed while at the same time private sector firms cannot fill 600 000 vacancies. In South Africa the situation is even more extreme, with 3 million young people in NEET (young people not in Education, Employment or Training) and 600 000 unemployed university graduates versus 800 000 vacancies (ILO, 2011). 4 Centre for evaluation and assessment, 2006 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 39 Figure 36: Trends in working age population (’000) 25000 working age population 20000 15000 10000 5000 0 2008 2009 2010 2011 2012 2013 2014 15-34 18209 18405 18608 18824 19053 19283 19504 35-64 13336 13732 14124 14511 14892 15274 15672 Source: Stats SA, 2014a Figure 37: Percentage change in working age population among the youth and adults, 2008–2014 3,50 3,00 % change 2,50 2,00 1,50 1,00 0,50 0,00 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 15-34 1,08 1,10 1,16 1,22 1,21 1,15 35-64 2,97 2,13 2,74 2,63 2,57 2,61 Source: Stats SA, 2014a As indicated in Figure 36, through the period 2008–2014, a larger share of the working age population is accounted for by youth compared to adults (35–64), yet the annual percentage changes in the employed population among adults across all the years, though steadily declining, is higher than among the youth population (Figure 37). The figure suggests that the adult working age population increased at a faster pace than the young employed population and their share in employment increased from 42,3% in 2008 to 44,6% in 2014 (Stats SA, 2014a). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 40 share of youth Figure 38: Share of youth in working age population and in employment, 2008 and 2014 70 60 50 40 30 20 10 0 Share of youth in working age population share of youth in employment 2008 57,4 44,7 2014 55,4 39,9 Source: Stats SA, 2014a Youth in South Africa are vulnerable in the labour market. Figure 38 indicates that although the share of youth in working age population was 57,4% and 55,4% in 2008 and 2014 respectively, their share in employment decreased from 44,7% in 2008 to almost 40% in 2014. unemployment rate Figure 39: Unemployment rates 15-64, 2008-2014 40 30 20 10 0 2008 2009 2010 2011 2012 2013 2014 15-34 32,7 33,7 35,7 36,1 35,8 36,2 36,1 35-64 13,4 12,4 14,9 14,4 15,1 15,0 15,6 15-64 23,2 23,0 25,1 24,8 25,0 25,0 25,2 Source: Stats SA, 2014a Although unemployment rates for all age groups show a steady increasing trend, youth unemployment rates are noticeably higher than that of adults across the period 2008–2014 (Figure 39). This corroborates with the scarcity of job opportunities as seen in the absorption rates in Figure 40 below. Over time, the absorption rates for youth are lower compared to other age groups and it is indicative that government and private sector policies should be readdressed to create more employment opportunities for youth. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 41 Absorbtion rate Figure 40: Absorption rates of youth and adults in South Africa 70 60 50 40 30 20 10 0 2008 2009 2010 2011 2012 2013 2014 15-34 35,5 34,2 31,1 30,3 30,8 30,3 30,8 35-64 59,8 60,6 56,7 56,5 56,5 57 57,8 15-64 45,8 45,5 42,2 41,7 42,1 42,1 42,8 Source: Stats SA, 2014a In July 2010, the OECD released a survey of South Africa, which revealed that South Africa had the worst rate of unemployment for youth between the ages 15 and 24 among the 36 countries surveyed. The results suggest that 50% employment rate for working age youth is lagging behind other middle income and emerging market economies which employ about 80% youth. Youth unemployment is a supply side problem since the number of jobs created in the economy is too small (Altam and Marock, 2008). On the other hand, youth unemployment is a supply side problem because many young South Africans lack the appropriate skills, work-related capabilities and higher education qualifications required for a high skill economy. The 2009 CHET publication describes the post-school education as being characterised by the following: a large annual outflow of students from schooling without meaningful further educational opportunities, post-school institutions architecture that limits further educational oppurtunities for youth and a recapitilised FET colleges sectors that requires further training (CHET & FETI, 2012). 6.6 Youth and training skills Although education indicators seem to have reached the universal standard, research indicates that only a small proportion of South Africans further their education post schooling (Breier and Mabizela, 2008) even if given the high returns of tertiary education in the labour market (Keswell and Poswel, 2004). Training presents an alternative channel through which individuals can acquire skills to increase their productivity and improve their prospects on the job market. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 42 Table 6: Composition of employment by skill levels 1994 (% of total) 20,6 47,0 32,4 100,0 Skill level Skilled Semi-skilled Low skilled total 2014 (% of total) 25,2 46,2 28,5 100,0 Change (% point) +4,6 -0,8 -3,9 - Source: Stats SA, 2014c Table 7: Composition of skill levels of youth and adults, 1994 and 2014 15–34 Skill level Skilled Semi-skilled Low-skilled Total 1994 % of total 19,4 50,7 29,9 100,0 2014 % of total 20,8 52,3 27,0 100,0 35–64 Change (% point) 1,3 1,6 -2,9 - 1994 % of total 22,3 46,7 30,9 100,0 2014 % of total 28,1 42,4 29,5 100,0 Change (% point) 5,8 -4,4 -1,4 - Source: Stats SA, Computed from OHS 1994 and QLFS Quarter 2, 2014 The composition of the workforce by level of skills of 1994 and 2014 is shown in Table 6. There was a shift in the compostion of skilled labour force of +4,6% from 1994 to 2014 whilst the proportion of the composition of low-skilled labour force shows a decreasing trend with a percentage change point of -3,9. The analysis of composition of skills level of youths and adults as well as the percentage change points are shown in Table 7. Although the composition of skilled labour force of both adults and youth indicate a positive shift, an increase in the compostion of skilled adults (5,8%) is higher than that of youth (1,3%). With regards to composition of semi-skilled labour force, there was a significant decreasing shift of -4.4% of adults while that of youth increased by 1,6%. Data suggest that the level of composition of skilled adults surpasses that of youth. In South Africa the role of the level of aggregate demand in employment outcomes is well appreciated since there has been a speculation about the rate of GDP growth that would lead to a significant reduction of unemployment. However, the nature of unemployment is considered to be structural, with a feature of mismatch between the skills endowments of the labour force and the nature of skills demanded by employers (Bhorat and Hodge 1999). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6.7 43 The demographic dividend and good governance Governance is defined by the United Nations as, “the process of decisions-making and the process by which decisions are implemented or not implemented” (United Nations Economic and Social Commission for Asia and the Pacific, 2009). Good governance ensures that corruption is reduced and that the views of minority groups and vulnerable groups in society are included in decision making. Decisions should also respond to the current and future needs of the country. In addition to factors covered, for the demographic dividend to be realised, adequate governance policies need to be in place. Part of the policy considerations is the quality of government institutions, labour market regulation, macroeconomic management and openness to trade and capital flows (Drummond, Thakoor, & Yu, 2014). These can advance economic growth and boost the benefits of the dividend. Open economies assist in market and investor confidence which may assist the country to realise the dividend. 6.8 Labour market policies in South Africa South Africa’s labour market has undergone transformation since 1994 to redress inequalities created by apartheid policies. This has led to the following legislations which support the labour market transformation: - Labour Relations Act - Basic Conditions of Employment - Employment Equality Act - Skills Development Act According to the NDP (2011), achieving full employment is integral to improve the living standards of South Africans. The aim of the NDP is to reduce the unemployment rate to 6% by 2030. This will entail creating 11 million more jobs. To achieve this, the economy should grow on average by 5,4% every year. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 6.8.1 44 Good governance and savings Governance influences a country’s savings and investments, which is integral to reach the potential of the demographic dividend. A country’s citizens will save if it is safe and profitable. Government must promote savings by promoting stability of prices, low inflation and transparency and efficiency in financial institutions (Bloom, et al., 2003). The headline Consumer Price Index (CPI) annual inflation rate for South Africa in January 2015 was 4,4%. In January 2014 it was 3,7%. This indicates an increase in inflation in South Africa which makes it more difficult for South Africans to save. The South African government needs to look at controlling inflation rates in order to promote savings. The NDP (2011) emphasises the importance of reducing inequality in South Africa which is core to good governance. 6.8.2 Good governance and investor confidence Good governance is imperative in securing investment in the country to achieve the demographic dividend. An enabling environment for a demographic dividend requires good governance. A country must implement comprehensive governance policies to optimise the opportunity of the dividend. This will assist in drawing domestic and foreign investments in the South African economy. Investments will lead to job creation and increased economic growth. If this is not conducted, a country may not be able to take advantage of the dividend (Amjad, 2013). There may be high unemployment rates, especially for young people who are entering the working age population. Established legal systems and rules of law (contract law and financial standards) should be instituted to increase investor confidence (Eloundou-Enyegue, 2013). Reducing corruption and an efficiently operating government will also serve to increase investor confidence. Corruption is an effect of weak governance (Gribble & Bremner, 2012). 6.8.3 Good governance and gender equality An attribute of good governance is the promotion of gender equality. The demographic transition is promoted by gender equality (MEPD, 2014). When women are able to access family planning, they can make choices about fertility. This also influences the health of women. If there is gender equality in society, women can enter the work force and contribute to a family’s wellbeing (Royan & Sathar, 2013). Women with higher-paying jobs are able to improve the lives of their children. Women can also be encouraged to save and invest if there are policies that provide for access to credit and rights to inherit property and assets. Women who own land are more likely to produce food for their families (FAO, 2011). Women are more likely than men to use their income to improve the health and wellbeing of their families. If women’s access to assets is improved, this will assist the country in achieving the demographic dividend. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 45 Gender equality is also demonstrated by the number of women in legislatures and management positions. Violence against women contributes to deaths and disability and lost opportunities for women (Gribble & Bremner, 2012). South Africa has implemented the following policies that serve to protect women and empower them: Domestic Violence Act (1998), the Criminal Law Act (Sexual Offences and Related Matters, 2007 and the Promotion of Equality and Prevention of Unfair Discrimination Act, 2000. 6.8.4 Good governance and business The World Bank/ IFC’s ‘Ease of Doing Business Rank’ gives the view of the ability of a country to attract business. According to the 2015 data, South Africa rates 43 out of 189 economies. This is a drop from 37 in the 2014 data (World Bank Group, 2014). The World Economic Forum’s ‘Global Competitiveness Report’ considers factors that contribute to the demographic dividend. These are infrastructure, health, primary and higher education and training. Competitiveness is defined as the “set of institutions, policies and factors that determine the level of productivity of a country”. According to the 2014 data, South Africa rates 56 out of 144 countries in competitiveness. This is a drop from 53 in the 2013 data (World Economic Forum, 2014). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 46 Chapter 7: Conclusions and discussions The assessment of age-sex data suggests that overall, data is reasonable. Further, analysis of assessing age heaping reveals that data is reliable. However, there are variations when assessing data on sub-populations. Gauteng and Western Cape provinces experienced a worsening reporting of data from 1996 to 2011. The most probable explanation could be that Gauteng and Western Cape are the major migrant receiving provinces of the country, also from neighbouring countries. This might have affected the reporting of information from these populations since some of the migrants are in the country illegally. The importance of age and sex data cannot be underestimated as mentioned earlier. Training, particularly on the questionnaire should be emphasised and be given sufficient time to lessen the errors observed in the data. In trying to analyse the population age structure, it was found that there was an indentation in the population aged 5–14 and the increased proportion of children 0–4 compared to 2001 agesex population structure. The most likely reason for the declining proportion of children aged 5– 14 might be that it is the cohort that survived the increasing infant and child mortality between 1997 and 2006. As alluded in the monograph, many factors could have contributed to the increase of the population aged 0–4. Amongst them are; survival rates brought about by the decreasing infant and child mortality or the improvement in the reporting of children. Furthermore, the analysis of the age-sex structure suggests that fertility is the main phenomenon that affected the population structure. The change in the 2011 population structure is brought about by the persistent decrease of fertility from the 1960’s. With regards to mortality, the projected figure differs marginally to the reported one. Notwithstanding the sudden increase in the mortality between the late 1990’s and the mid-2000’s, the country had seen an improvement in life expectancy at birth over time, hence the population size with the variation of mortality rates exceeds the one with constant mortality. Migration appeared to have not altered the population structure. The fact we know is that there are illegal migrants in the country. However census only captures migrants that are declaring themselves. What we know is that illegal migration to South Africa is inevitable. Though measures were put in place to attempt to collect information on migration from all non-citizens irrespective of the legal status, we do not know if all the illegal migrants were reported. The oustanding finding is that the country has fewer elderly and children relative to those of working age. This is a similar profile of Asian countries which capitalise on the change of Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 47 population structure to stimulate the economy. Reaping the benefits, from the working age population will only be possible if sound policies on education, skills and health are put in place. The results from labour and HIV/AIDS statistics figures indicate that the youth of the country are still vulnerable in terms of unemployment and also HIV/AIDS is prevalent amongst them. If high unemployment rates and HIV/AIDS prevalence are not managed, this window of opportunity that South Africa has will become a perfect storm. The population between the ages of 15 and 29 will make up more than a quarter of the total population until 2030. The challenge is to provide skills, educate, manage HIV/AIDS and put all the working age population to work. By doing that, there is a real opportunity to build and improve a stronger economy resulting from the demographic transition. It is projected that in South Africa, the window of opportunity will close by 2030 as the elderly population over 64 will be rising from 5% in 2014 to 7% in 2023 and to over 8% by 2027 ( NDP, 2011). UN suggests that this is when the country’s population in demographic terms is regarded as old. The number of South Africans over 64 will rise from 2,2 million now to 4,4 million. The demographic dividend has a finite window of opportunity and is not automatic, the timing of policies to capitalise on the window of opportunity is critical. South Africa presents an illustration of how demographic transition that is not accompanied by sustained job orientated economic reforms can get countries to miss out on harnessing the full demographic dividend. The country has high unemployment rates among the youth that has led to increasing unrest. Failure to transform the economy and ensure creation of jobs for the population can result in social and political instability when the youthful surplus labour force is not economiccally engaged (Ministry of Finance, Planning and Economic Development, 2014). Unless South Africa implements policies that address health challenges, appropriate skills for labour market and sound corporate governance principles that are adhered to, then it will lose out on the dividend even though its demographic transition is ideal and the population structure is in a position to maximise such a benefit. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 8 48 References Acturial Society of South Africa. (2008). AIDS and Demographic Model (lite version 110207). AfDB, OECD, & UNDP. (2012). African Economic Outlook 2012: Education and skills mismatch. Paris: Development Centre and African Bank. African Institute for Development Policy (AFIDEP). (2013). Achieving the demographic Dividend: A window of opportunity for sub-Saharan Africa. Altam, M., & Marock, C. (2008). Identifying appropriate interventions to support the transition from schooling to work place. Human Sciences Research Council and Centre for Poverty Employment and growth. Amjad, R. (2013). Why Has Pakistan Not Reaped Its Demographic Dividend?. Population Council Book Series, 1(1), pp 41-53. Arora, S. (2001). Health, Human Productivity and Long-Term Economic Growth. The Journal of Economic History, 61(3), pp 699-749. Barron, P., Pillay, Y., Doherty, T., Sherman, G., Jackson, D., Bhardwaj, S., & Goga, A. (2013). Eliminating mother-to-child HIV transmission in South Africa. Bulletin of the World Health Organization, 91(1), pp 70-74. Bhorat, H. &Hodge, J. (1999). Decomposing shifts in labour demands in South Africa. South African Journal of Economics, Economic Society of South Africa, 67(3),pp 348-380. Bloom, D., Canning, D., & Sevilla, J. (2003). The Demographic Dividend: A New Perspective on the Economic Consequences of Population Change. Rand Corporation. Bongaarts, J., & Watkins, S.C. (1996). Social Interactions and Contemporary Fertility Transitions. Population and Development Review, 22(4), pp 639-682. Breier, M., & Mabizela, M. (2008). Human Resources Development Review 2008: Education, employment and skills in South Africa. Cape Town: HSRC Press. Caldwell, J. C., & Caldwell, P. (1993). The South African fertility decline. Population and development review, 19(2), pp 225-262. Caldwell, J., C., & Caldwell, P. (2003). The fertility transition in sub-Saharan Africa. In Department of Social Development, Fertility: current South African issues of poverty, HIV/AIDS and youth. Pretoria: HSRC. CHET & FETI. (2012). Shaping the future of South Africa's Youth: Rethinking post school education and training. Department of Basic Education. (2010). Education for all South Africa country report. Pretoria: South Africa. Department of Education. (2009). Education Statistics in South Africa, School Realities. Pretoria: South Africa. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 49 Department of Health. (1999). South Africa Demographic and Health Survey. Pretoria: South Africa. Department of Higher Education and Training. (2013). Statistics on post school education and training in South Africa: 2011. Pretoria: Government Printers. Dorrington, R.E., et al. (1999). 'Current fertility rates in South Africa: 1996 Census revisited', Workshop on Phase 2 of Census 1996 Review (Johannesburg, South Africa). Dorrington, R.E., Bradshaw, D., & Laubscher, R. (2014). Rapid mortality surveillance report 2012. Cape Town: South Africa Medical Research Council. Drummond, P., Thakoor, V., & Yu, S. (2014). Africa Rising: Harnessing the Demographic Dividend. IMF Working Paper. Eloundou-Enygue P. (2013). Harnessing a demographic dividend: Challenges and opportunities in high and intermediate fertility countries. Paper prepared for the Expert Group Meeting on Fertility, Changing Population and Development. New York: United Nations Population Division. FAO. 2011. The State of Food and Agriculture,Women in agriculture. Closing the gender gap for development. Rome Fogel, R. W. (1990). The Conquest of High Mortality and Hunger in Europe and America: Timing and Mechanisms, NBER Working Paper No. 16. National Bureau of Economic Research, Cambridge, MA. Fortson, J. G. (2009). HIV/AIDS and Fertility. American Economic Journal: Applied Economics, 1(2), pp 170-194. Gribble, J. N., & Bremner, J. (2012). Achieving a demographic dividend. Population Bulletin, 67(2). Heuveline, P. (2003). 'Mortality and Fertility Interactions: New Insights from Recent Population Dynamics in Cambodia. Population Research Center, NORC & The University of Chicago. Hobbs, F. (2004). Age and Sex Composition: Elsevier Academic Press. Human Science Research Council. (2014). South African National HIV Prevalence, Incidence and Behaviour Survey, 2012. Cape Town: HSRC. ILO. (2011). Towards Decent Work in Sub-Saharan Africa-Monitoring MDG Employment Indicators. Geneva: International Labour Organization. Keswell, M., & Poswell, L. (2004). Returns to education in South Africa: a retrospective sensitivity analysis of the available evidence. South African Journal of economics, 72(4), pp 834-860. Lee, R. (2003). The demographic Transition: Three centuries of demographic change. Journal of Economic Perspectives, 17(4), pp 167-190. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 50 Lee, R.D. (1997). Population dynamics: Equilibrium, disequilibrium and consequences of fluctuations. pp 1063-1115. Lindstrom, P. and Berhanu, B.(1999), "The impact of war, famine, and economic decline on marital fertility in Ethiopia," Demography 36 (2): 247-261 (1999). Mason, K. O., & Cope, L. G. (1987). Sources of age and date of birth misreporting in 1900 U.S Census. Journal of Demography, 24(4). Mayer, D. (2001). The Long-Term Impact of Health on Economic Growth in Latin America, World Development, 29(6) pp 1025-33. MEPD. (2014). Malawi's Pathway to a Demographic Dividend. Department of Population at the Ministry of Economic Planning and Development, Lilongwe. Ministry of Finance, Planning and Economic Development. (2014). Harnessing the Demographic dividend: Accelerating socioeconomic transformation in Uganda. Ministry of Finance, Planning and Economic Development. (2014). Harnessing the demographic dividend: Accelerating socioeconomic transformation in Uganda. UNFPA. Moultrie T.A., & Timaeus I.M. (2003). The South African fertility decline: Evidence from two censuses and a Demographic and Health Survey. Population Studies: Journal of Demography, 57(3), pp 265-283. Moultrie T.A., & Dorrington, R.E. (2004). Estimation of fertility from the 2001 South African Census data. Centre for Actuarial Research, Monograph no. 12: University of Cape Town. Moultrie, T., Dorrington, R., Hill, A., Hill, K., Timæus, I., & Zaba, B. (2013). Tools for demographic estimation. Paris: International Union for the Scientific Study of Population. Naire, P. S. (2011). Age structural transition in South Africa. African Population Studies, 25(2). Nannan, N., et al. (2012). Under-5 mortality statistics in South Africa: Shedding some light on the trends and causes 1997-2007 Cape Town South African Medical Research Council, 2012. National Planning Commission. (2011). National Development Plan vision for 2030. Pretoria Government Printers, Republic of South Africa. Newell, C. (1988). Methods and Models in Demography, New York: The Guilford Press. Obaid, T. A. (2007). 'A world fit for all ages'. Paper presented at the 40th session of United Nations Commission on Population and Development, New York, 9 April. Partners in Population and Development, Africa Regional Office. (2011). The Demographic Dividend and Development. Retrieved from www.ppdafrica.org Preston, S. H. (1978). The effect of infant and child mortality on fertility. New York, Academic Press. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 51 Pullum, T. W. (2005). A statistical reformulation of demographic methods to assess the quality of age and date reporting with application to Demographic Health and surveys. Paper presented at the 2005 Annual meeting of Population Association of America, Philadelphia, March 31- April 2. Reniers, G., Masquelier, B., & Gerland, P. (2011). Adult Mortality Trends in Africa. In International Handbook of Adult Mortality, Springer Netherlands, pp 151-170. Republic of South Africa. (1996). South African Schools Act, 1996 (Act 84 of 1996). Pretoria: Government Printers. Retherford, R. D., & Thapa, S. (1998). Fertility trends in Nepal, 1977-1995. Contributions to Nepalese Studies Special Issue on Fertility Transition in Nepal, 25 special issue: pp 9-58. Rogers, A., Little, J., & Raymer, J. (2010). The indirect estimation of migration: Methods for dealing with irregular, inadequate, and missing data (Vol. 26). Springer Science & Business Media. Ross, J. (2004). Understanding the Demographic Dividend, Policy Project, futures group, Washington, DC. Rowland, D. (2003). Demographic Methods and Concepts. Oxford: Oxford University Press, USA. Royan, R., & Sathar, Z. A. (2013). Overview: The Population of Pakistan Today. Population Council book series, 1(1), 3-11, New York. Ryder, R.W., Batter V.L., Nsuami M., Badi N., Mundele, L., Matela, B., Utshudi, M.,& Heyward W.L. (1991). Fertility rates in 238 HIV-1-seropositive women in Zaire followed for 3 years post-partum. AIDS, 5(12) pp 1521–1527. Sherman, G., Lilian, R., Barron, P., Candy, S., Robinson, P., & Bhardwaj, S. (2012). Laboratory Information System (LIS) data is useful for monitoring the prevention of mother-to-childtransmission program (PMTCT) in South Africa Conference. Paper presented at the XIX International AIDS conference, Washington, United States. Shryock, H.S, & Siegel, J.S. (1976). The methods and materials of demography, San Diego: Academic Press. Sibanda, A., & Zuberi, T. (1999). Contemporary Fertility Levels and Trends in South Africa: Evidence from Reconstructed Census Birth Histories, Third African Population Conference. Durban: South Africa, pp 79-108. Simelane, S.E. (2002). An overall and demographic description of the South African Population based on Census 96, Occasional Paper Series, 2002/1, Statistics South Africa, Pretoria. Spaull, N. (2013). South Africa's Education crisis: The quality of education in South Africa 1994 – 2011, Centre for Development and Enterprise, Johannesburg, pp 1-65. Statistics South Africa. (2004). Post-enumeration Survey Result Methodology, Report no. 03-02-07. Pretoria: South Africa. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 52 Statistics South Africa. (2011). Mid-Year population estimates 2011, P-0302. Pretoria: South Africa. Statistics South Africa. (2012a). Census 2011 Statistical release, P-0301.4. Pretoria: South Africa. Statistics South Africa. (2012b). Post-enumeration Survey Results and Methodology, Report No. 03-01-46. Pretoria: South Africa. Statistics South Africa. (2013). Millennium Development Goals 2013, MDG Reports. Pretoria: South Africa. Statistics South Africa. General Household Survey 2002-2009, P-0318: Pretoria: South Africa. Statistics South Africa. (2014a). National and Provincial Labour Market: Youth Q1 2008-Q1 2014, P-0211.4.2. Pretoria: South Africa. Statistics South Africa. (2014b). Gross Domestic Product (GDP), 2nd Quarter 2014, P-0441. Pretoria: South Africa. Statistics South Africa. (2014c). Youth employment, unemployment skills and economic growth, 02-11-00. Pretoria: South Africa. Statistics South Africa. (2014d). Mortality and causes of death in South Africa 2012, Findings from death notification, P-0309.3. Pretoria: South Africa. Subedi, B. P. (1998). Regional Patterns of Fertility in Nepal. Contributions to Nepalese Studies, pp 145-156. Udjo, E. O. (1997). Fertility and mortality trends in South Africa: The evidence from the 1995 October household survey and implications on population projections. Central Statistics. Udjo, E.O. 1998. Additional Evidence Regarding Fertility and Mortality Trends in South Africa and Implications for population projections, Pretoria: Statistics South Africa. Udjo, E. O. (2005). An evaluation of age-sex distributions of South Africa's population within the context of HIV/AIDS. Development Southern Africa, 22(3), pp 319-346. Udjo, E.O. (2014). Estimating demographic parameters from the 2011 South Africa population census. African Population Studies, 28 (1), pp 564-578. UNECA. (2013a). Africa and challenges of realizing the demographic dividend: Industrialization for an Emerging Africa: Policy Brief. COM 2013. 21-26 March, Abidjan, Cote d' Ivoire. UNECA. (2013b). Initiating the demographic dividend by achieving fertility decline: Industrialization for an Emerging Africa: Policy Brief. COM 2013. 21-26 March, Abidjan Cote d' Ivoire. UNICEF. (2013). Levels and Trends in child mortality. New York: UNICEF. Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 53 United Nations. (1955). Manual II: Methods of Appraisal of Quality of Basic Data for Population Estimates. Retrieved http:www.un.org/esa/population/pubsarchive/migration/UN 1955 Manual2pdf. United Nations. (1998). Principles and Recommendations for Population and Housing Censuses, Revision 1. Statistical Papers, Series M, No. 67/Rev. 1. United Nations. (2010). Handbook on Population and Housing Census Editing, New York: Department of Economic and Social Affairs. United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP). (2009). What is good governance? http://www.unescap.org/pdd/prs/projectactivities. Urdal, H. (2011). A Clash of Generations? Youth Bulges and Political Violence. In United Nations Expert Group Meeting on Adolescents, Youth and Development. USAID. (2012). Youth and development Policy: realizing Demographic Opportunity. Washington, DC: U.S. Agency for international development. U.S. Census Bureau. (2010). Age and Sex Composition, 2010 census briefs. U.S. Department of Commerce Economics and Statistics Administration. Van Der Berg, S., Burger, C., Burger, R., de Vos, M., du Rand, G., Gustafsson, M., Moses, E., Shepard, D., Spaull, N., Taylor, S., van Broekhuizen, H., & Von Fintel, D.(2011). Low quality education as a poverty trap. School of Economics research paper, Stellenbosch: University of Stellenbosch. Williamson, J. (1997). Growth, distribution and demography: some lessons from history, NBER working paper No. 6244,Cambridge: National Bureau of Economic Research. World Bank Group. (2014). Ease of doing business in South Africa. Retrieved October, 2014, from Doing business: http//www.doingbusiness.org/data/exploreeconomies/south-africa. World Economic Forum. (2014). The Global Competitiveness Report 2014-2015. Geneva Zaba, B., & Gregson, S. (1998). Measuring the impact of HIV on fertility in Africa. AIDS, No. 12, (Supplement 1). Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 54 9 Appendix Appendix 1. Distribution of local municipalities by age and sex EC101: Camdeboo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 2 626 2 493 2 473 2 621 2 316 1 992 1 613 1 483 1 550 1 348 1 160 953 794 557 393 244 131 87 24 835 2 611 2 518 2 452 2 482 2 266 1 884 1 665 1 650 1 590 1 521 1 342 1 112 938 738 559 394 236 199 26 158 5 238 5 011 4 925 5 103 4 582 3 876 3 279 3 133 3 141 2 869 2 502 2 065 1 732 1 296 953 638 366 286 50 993 EC103: Ikwezi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 593 535 503 423 406 375 343 336 284 315 303 199 150 134 71 43 27 15 5 055 Female 566 603 475 463 418 342 367 354 331 358 328 253 183 151 119 84 54 36 5 482 Total 1 159 1 138 978 886 824 716 709 690 614 673 631 452 333 285 190 127 81 51 10 537 EC102: Blue Crane Route 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC104: Makana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 2 172 1 741 1 645 1 558 1 428 1 401 1 150 1 189 1 054 1 011 962 769 570 414 320 152 80 66 17 680 Male 3 676 3 211 3 046 3 710 4 730 3 764 2 901 2 485 2 424 2 126 1 855 1 453 944 680 542 305 186 136 38 175 Total 1 784 1 712 1 463 1 615 1 432 1 359 1 163 1 247 1 195 1 192 1 053 901 714 517 457 239 162 116 18 322 3 956 3 453 3 108 3 173 2 859 2 760 2 314 2 436 2 248 2 203 2 015 1 670 1 284 931 778 391 242 182 36 002 Female 3 504 3 239 2 934 3 981 5 229 3 733 2 653 2 838 2 835 2 631 2 304 1 783 1 398 979 913 568 312 382 42 215 Total 7 180 6 450 5 981 7 692 9 959 7 497 5 554 5 323 5 258 4 757 4 159 3 236 2 342 1 659 1 455 873 498 518 80 390 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 55 EC105: Ndlambe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 006 2 593 2 261 2 469 2 549 2 509 2 032 2 014 1 767 1 571 1 477 1 223 1 052 814 734 424 282 258 29 035 EC107: Baviaans 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 1 000 942 820 779 711 621 577 572 559 526 456 382 261 209 135 83 45 31 8 709 Female 2 796 2 538 2 243 2 464 2 408 2 571 2 266 2 218 2 269 1 998 1 906 1 526 1 362 1 039 1 003 588 453 492 32 141 Female 1 006 906 849 708 705 670 604 571 567 579 475 454 307 249 187 106 60 48 9 052 Total 5 803 5 131 4 505 4 933 4 958 5 080 4 298 4 232 4 035 3 569 3 383 2 749 2 413 1 853 1 737 1 012 735 750 61 176 Total 2 006 1 847 1 669 1 487 1 416 1 291 1 181 1 143 1 126 1 105 931 836 569 458 322 189 105 79 17 761 EC106: Sundays River Valley 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC108: Kouga 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 2 885 2 366 2 084 2 394 2 958 3 001 2 346 2 234 1 892 1 505 1 272 940 680 457 357 166 117 107 27 761 2 797 2 473 1 973 2 166 2 386 2 471 1 995 2 021 1 895 1 640 1 406 1 115 771 536 471 275 166 183 26 743 5 682 4 839 4 057 4 560 5 344 5 473 4 341 4 254 3 787 3 145 2 679 2 055 1 451 993 829 441 283 290 54 504 Male 5 350 4 294 3 723 3 806 4 328 4 672 3 951 3 594 3 245 2 725 2 130 1 848 1 511 1 201 1 035 652 317 208 48 591 Female 5 016 4 284 3 735 3 839 4 337 4 612 3 731 3 493 3 202 2 966 2 412 2 030 1 899 1 482 1 160 802 497 470 49 967 Total 10 366 8 579 7 458 7 645 8 665 9 284 7 682 7 087 6 447 5 691 4 542 3 878 3 410 2 684 2 195 1 454 814 678 98 558 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC109: Kou-Kamma 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC121: Mbhashe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 56 Male 2 306 1 917 1 815 1 561 1 989 1 934 1 581 1 578 1 370 1 212 987 792 550 354 236 127 57 40 20 405 Male 15 894 15 844 17 913 18 129 10 318 6 634 4 724 3 907 3 066 3 259 3 495 3 200 3 194 2 527 2 438 1 277 864 544 117 230 Female 2 274 1 997 1 778 1 536 1 762 1 875 1 470 1 494 1 385 1 243 1 016 797 599 382 305 169 94 82 20 258 Female 15 489 15 494 16 194 17 247 11 145 7 667 6 325 6 396 6 015 6 252 6 363 5 105 4 970 3 597 3 768 2 523 1 878 1 250 137 679 Total 4 580 3 914 3 593 3 097 3 751 3 809 3 052 3 071 2 755 2 454 2 004 1 589 1 149 735 541 297 151 122 40 663 Total 31 383 31 338 34 107 35 376 21 463 14 301 11 049 10 304 9 081 9 512 9 858 8 306 8 164 6 125 6 206 3 800 2 742 1 794 254 909 EC122: Mnquma 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC123: Great Kei 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 14 938 14 230 15 226 16 609 10 596 7 372 5 568 4 756 4 035 3 994 4 421 4 108 3 805 2 870 2 463 1 347 943 593 117 873 Male 2 202 1 898 1 675 2 002 1 803 1 423 1 186 1 008 1 026 885 912 757 563 449 493 212 124 86 18 703 14 627 13 948 13 641 15 327 10 822 7 434 5 900 6 174 6 604 6 804 7 224 6 400 5 195 4 123 4 030 2 837 1 868 1 560 134 517 Female 2 142 1 771 1 491 1 868 1 532 1 383 1 267 1 254 1 323 1 209 1 213 949 614 656 758 409 259 190 20 287 Total 29 566 28 178 28 867 31 936 21 417 14 806 11 467 10 930 10 639 10 798 11 644 10 508 9 000 6 993 6 493 4 184 2 811 2 153 252 390 Total 4 344 3 669 3 166 3 870 3 335 2 806 2 453 2 262 2 349 2 093 2 125 1 706 1 177 1 105 1 251 622 383 276 38 991 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC124: Amahlathi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC126: Ngqushwa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 57 Male 7 244 6 383 5 925 6 846 5 384 4 080 3 175 2 954 2 853 2 817 2 742 2 413 1 999 1 364 1 221 583 359 305 58 647 Male 4 074 3 727 3 289 3 809 2 775 2 122 1 751 1 726 1 514 1 581 1 637 1 565 1 310 1 041 924 510 314 316 33 984 Female 7 008 6 377 5 494 6 384 4 708 3 803 3 289 3 334 3 679 3 810 3 874 3 200 2 392 1 907 2 019 1 158 890 806 64 131 Female 4 106 3 563 2 898 3 334 2 478 2 074 1 819 1 992 2 118 2 274 2 263 2 028 1 782 1 499 1 525 1 136 709 609 38 206 Total 14 252 12 760 11 419 13 229 10 092 7 883 6 464 6 288 6 532 6 627 6 615 5 613 4 390 3 270 3 240 1 741 1 249 1 112 122 778 Total 8 180 7 290 6 187 7 142 5 253 4 195 3 570 3 719 3 631 3 855 3 900 3 593 3 092 2 540 2 449 1 646 1 024 924 72 190 EC127: Nkonkobe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC128: Nxuba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 6 891 6 329 5 590 6 661 6 519 4 603 3 346 3 232 3 119 3 082 2 931 2 424 1 999 1 568 1 277 663 460 440 61 133 Male 1 333 1 224 1 112 1 215 958 899 728 732 621 635 545 527 350 307 240 121 72 59 11 677 Female 6 720 6 143 4 923 5 872 6 290 4 356 3 357 3 718 3 882 3 894 3 702 3 213 2 622 2 173 1 897 1 253 981 987 65 982 Total 13 611 12 472 10 513 12 534 12 809 8 959 6 703 6 950 7 001 6 976 6 633 5 637 4 621 3 741 3 174 1 915 1 441 1 427 127 115 Female 1 363 1 187 1 063 1 169 914 868 750 738 750 794 670 627 446 376 379 232 129 130 12 587 Total 2 695 2 411 2 175 2 385 1 872 1 767 1 478 1 470 1 371 1 429 1 216 1 154 796 683 619 353 201 189 24 264 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC131: Inxuba Yethemba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC133: Inkwanca 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 58 Male Female Total 3 502 3 040 2 932 3 049 2 973 2 693 2 091 2 134 1 952 1 758 1 619 1 330 1 012 630 436 253 147 118 31 671 3 484 3 217 2 929 2 916 2 690 2 776 2 235 2 200 2 214 1 978 1 890 1 582 1 278 894 675 378 265 287 33 889 Male 1 305 1 165 1 043 1 055 1 082 877 758 615 531 492 447 428 341 204 156 82 44 51 10 676 Female 1 304 1 027 963 1 029 1 049 896 689 687 614 654 591 520 388 229 312 136 109 99 11 295 Male 6 987 6 258 5 861 5 965 5 663 5 468 4 325 4 335 4 167 3 736 3 509 2 912 2 291 1 524 1 111 631 412 405 65 560 EC132: Tsolwana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Total 2 609 2 192 2 006 2 084 2 131 1 773 1 448 1 302 1 144 1 145 1 038 948 729 433 468 218 152 150 21 971 EC134: Lukanji 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 10 208 10 081 9 190 10 041 9 129 7 644 5 704 5 212 4 536 4 229 3 917 3 286 2 586 1 714 1 479 732 495 436 90 619 1 959 1 838 1 827 1 820 1 442 1 129 837 805 683 681 584 550 474 352 318 166 98 93 15 656 Female Total 1 924 1 898 1 581 1 738 1 435 1 145 936 949 930 862 907 896 713 506 489 357 187 172 17 625 3 884 3 735 3 408 3 558 2 877 2 273 1 773 1 755 1 613 1 544 1 491 1 446 1 187 857 807 523 284 265 33 281 Female 10 381 9 930 8 465 9 718 9 035 7 634 6 023 5 934 5 737 5 772 5 426 4 406 3 351 2 376 2 459 1 500 986 970 100 103 Total 20 589 20 011 17 656 19 759 18 164 15 278 11 726 11 147 10 272 10 000 9 343 7 693 5 938 4 089 3 938 2 233 1 481 1 406 190 723 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC135: Intsika Yethu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC137: Engcobo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 59 Male 8 971 9 129 9 017 9 438 5 579 4 049 2 825 2 584 2 126 2 310 2 555 2 468 2 386 1 848 1 632 886 611 384 68 797 Male 10 577 10 348 10 568 10 419 5 360 3 886 2 802 2 594 2 304 2 177 2 242 2 087 1 997 1 388 1 516 819 559 312 71 953 Female Total 8 565 8 827 7 975 8 146 4 984 3 587 2 995 3 244 3 580 3 967 4 174 3 857 3 488 2 446 2 665 1 675 1 383 1 017 76 575 17 536 17 955 16 992 17 584 10 563 7 635 5 820 5 828 5 706 6 277 6 729 6 326 5 873 4 294 4 297 2 562 1 994 1 401 145 372 Female 10 190 10 011 9 754 9 499 6 338 4 815 3 879 4 152 3 936 3 867 3 935 3 278 2 646 2 091 2 150 1 516 866 636 83 560 Total 20 768 20 359 20 322 19 917 11 698 8 701 6 681 6 746 6 240 6 044 6 177 5 365 4 642 3 480 3 666 2 335 1 425 948 155 513 EC136: Emalahleni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC138: Sakhisizwe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 7 242 7 580 6 806 7 722 4 923 3 314 2 523 2 362 1 890 1 867 2 213 1 993 1 860 1 370 1 418 707 426 403 56 620 Male 3 984 3 618 3 661 4 025 2 902 2 109 1 661 1 334 1 197 1 117 1 188 1 115 910 641 526 291 201 165 30 646 Female Total 7 086 7 083 6 102 6 920 4 506 3 159 2 533 2 664 2 919 3 163 3 514 3 027 2 653 1 953 2 385 1 409 907 858 62 839 14 328 14 663 12 908 14 642 9 429 6 473 5 056 5 026 4 809 5 030 5 727 5 020 4 514 3 323 3 803 2 116 1 333 1 261 119 460 Female 3 980 3 544 3 444 3 592 2 629 1 998 1 638 1 627 1 595 1 685 1 704 1 331 1 215 772 833 601 402 344 32 936 Total 7 964 7 162 7 105 7 617 5 532 4 107 3 299 2 962 2 792 2 801 2 892 2 447 2 125 1 413 1 359 892 603 509 63 582 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC141: Elundini 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC143: Maletswai 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 60 Male 8 188 8 164 8 860 9 013 6 441 4 397 3 189 2 743 2 210 2 074 2 120 2 095 1 938 1 382 1 156 765 453 294 65 482 Male 2 531 2 406 2 158 2 043 1 990 1 823 1 577 1 346 1 124 867 769 644 544 353 250 152 71 87 20 735 Female 7 949 7 829 7 866 8 166 5 746 4 302 3 453 3 512 3 387 3 508 3 587 3 189 2 804 2 032 1 911 1 666 1 044 706 72 658 Female 2 644 2 388 2 064 2 100 2 187 2 137 1 632 1 513 1 236 1 118 1 055 810 673 442 386 262 192 228 23 065 Total 16 137 15 993 16 726 17 180 12 187 8 699 6 641 6 256 5 597 5 582 5 707 5 285 4 742 3 414 3 067 2 431 1 497 1 000 138 141 EC142: Senqu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Total 5 176 4 793 4 222 4 142 4 177 3 959 3 209 2 858 2 360 1 985 1 825 1 454 1 217 794 636 413 263 315 43 800 EC144: Gariep 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 8 030 7 533 7 554 8 269 6 223 4 264 3 570 3 074 2 520 2 235 2 116 1 967 1 863 1 271 1 051 707 324 236 62 804 Male 1 904 1 823 1 571 1 577 1 581 1 370 1 159 1 058 835 831 736 673 439 345 244 132 69 73 16 420 Female 7 783 7 589 7 088 7 732 6 484 5 024 4 061 3 660 3 163 3 241 3 205 2 971 2 604 1 962 1 719 1 548 869 642 71 346 Female 1 939 1 835 1 596 1 508 1 373 1 321 1 130 1 101 946 994 805 766 610 361 397 223 192 160 17 256 Total 15 812 15 123 14 642 16 001 12 707 9 288 7 631 6 734 5 683 5 476 5 321 4 937 4 467 3 233 2 770 2 255 1 192 878 134 150 Total 3 843 3 658 3 168 3 084 2 954 2 691 2 289 2 159 1 781 1 826 1 541 1 439 1 049 706 641 355 261 233 33 677 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC153: Ngquza Hill 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC155: Nyandeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 61 Male 20 642 19 373 19 720 19 286 11 954 8 277 6 115 4 705 3 272 3 153 3 140 2 498 2 122 1 429 1 461 813 646 368 128 974 Male 19 945 19 426 20 370 20 713 13 174 8 397 5 884 4 785 3 820 3 491 3 593 2 937 2 523 1 640 1 624 885 639 394 134 241 Female Total 20 192 19 511 18 590 19 058 12 299 9 698 8 012 6 881 6 348 5 701 5 312 3 956 3 576 2 801 2 772 2 140 1 731 929 149 507 40 833 38 884 38 311 38 344 24 253 17 975 14 127 11 586 9 620 8 855 8 451 6 454 5 698 4 230 4 233 2 953 2 377 1 297 278 481 Female 19 655 19 387 19 127 20 188 13 680 10 314 8 293 7 665 6 619 6 418 5 792 4 651 3 845 2 582 3 118 2 284 1 580 950 156 149 Total 39 600 38 813 39 496 40 901 26 854 18 711 14 177 12 450 10 440 9 909 9 386 7 589 6 368 4 222 4 742 3 169 2 219 1 344 290 390 EC154: Port St Johns 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC156: Mhlontlo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 11 407 11 124 11 184 11 358 6 433 4 026 2 815 2 301 1 760 1 649 1 794 1 493 1 365 838 876 505 344 210 71 482 Male Female 11 265 11 025 10 384 11 240 7 060 5 046 4 172 3 811 3 431 3 353 3 141 2 400 2 309 1 501 1 807 1 200 967 546 84 654 Female 12 605 12 055 12 303 13 209 8 518 5 109 3 636 3 155 2 627 2 626 2 556 2 392 2 094 1 597 1 278 799 570 312 87 440 12 265 11 559 11 327 12 169 8 357 5 836 4 749 4 615 4 466 4 622 4 495 3 962 3 359 2 432 2 323 1 986 1 290 975 100 786 Total 22 672 22 149 21 568 22 597 13 493 9 071 6 986 6 112 5 190 5 003 4 935 3 893 3 674 2 338 2 682 1 706 1 311 755 156 136 Total 24 870 23 614 23 630 25 378 16 875 10 945 8 385 7 771 7 093 7 248 7 051 6 353 5 453 4 028 3 601 2 785 1 860 1 288 188 226 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC157: King 0 - 4 Sabata Dalindyebo 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EC442: Umzimvubu 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 62 Male 27 168 25 770 27 109 30 240 22 445 16 315 11 320 9 248 7 621 6 789 6 085 5 226 4 328 2 703 2 485 1 410 1 018 671 207 951 Male 12 854 12 135 12 212 12 507 8 523 5 659 4 329 3 579 2 823 2 516 2 625 2 201 2 040 1 500 1 065 679 441 259 87 946 Female 26 792 25 443 25 745 31 038 25 476 19 486 14 662 13 698 12 011 10 603 9 817 7 941 6 391 3 837 4 446 2 778 1 981 1 614 243 760 Female 12 311 12 149 11 724 12 078 8 852 6 714 5 383 5 042 4 450 4 439 4 209 3 966 3 425 2 646 2 192 1 939 1 298 859 103 674 Total 53 961 51 213 52 854 61 279 47 921 35 801 25 982 22 946 19 632 17 392 15 902 13 167 10 720 6 540 6 931 4 188 2 999 2 284 451 710 EC441: Matatiele 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Total 25 164 24 284 23 935 24 585 17 375 12 373 9 712 8 621 7 273 6 955 6 834 6 167 5 465 4 145 3 256 2 618 1 739 1 118 191 620 EC443: Mbizana 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 13 018 13 104 13 631 13 190 8 639 5 697 4 431 3 730 2 945 2 992 2 932 2 616 2 346 1 678 1 164 795 450 317 93 675 Female 12 881 12 720 12 970 12 915 8 968 6 898 5 699 5 387 4 656 4 705 4 546 4 327 3 756 2 941 2 320 2 117 1 335 1 027 110 168 Male 21 565 20 702 21 124 19 605 11 174 7 448 4 827 3 921 3 093 2 882 2 990 2 412 2 210 1 323 1 309 815 617 315 128 332 Female 21 224 19 786 20 110 19 685 12 909 9 796 7 400 7 068 6 483 5 883 5 510 3 786 3 650 2 746 2 728 2 055 1 797 958 153 573 Total 25 898 25 823 26 601 26 105 17 608 12 595 10 130 9 117 7 601 7 697 7 478 6 943 6 102 4 619 3 484 2 912 1 786 1 344 203 843 Total 42 789 40 489 41 234 39 290 24 082 17 244 12 226 10 989 9 576 8 765 8 500 6 198 5 860 4 069 4 038 2 870 2 413 1 273 281 905 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa EC444: Ntabankulu 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NMA: Nelson Mandela Bay 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 63 Male 8 984 8 424 8 545 8 213 5 514 3 557 2 433 1 887 1 400 1 400 1 404 1 198 1 135 789 674 425 359 194 56 534 Male 55 884 49 558 43 692 49 795 56 968 52 720 42 877 39 716 35 817 31 697 28 190 22 771 16 717 10 714 7 448 4 499 2 328 1 603 552 994 Female 8 905 8 508 8 120 8 401 5 695 4 156 3 148 2 927 2 692 2 806 2 528 2 215 1 951 1 396 1 336 1 172 882 604 67 442 Female 54 522 48 163 42 451 51 016 58 483 53 883 44 527 42 369 40 692 37 716 34 542 27 610 21 106 14 642 11 345 7 661 4 668 3 724 599 121 Total 17 889 16 931 16 664 16 614 11 208 7 713 5 582 4 814 4 092 4 206 3 933 3 413 3 086 2 184 2 010 1 597 1 241 798 123 976 Total 110 406 97 721 86 143 100 811 115 451 106 603 87 405 82 085 76 509 69 414 62 732 50 381 37 822 25 357 18 793 12 160 6 997 5 326 1 152 115 BUF: Buffalo City 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 39 292 33 365 28 646 33 356 37 658 34 235 28 329 24 844 21 990 19 442 17 100 14 011 9 850 6 241 5 026 2 539 1 502 1 131 358 557 Female 38 211 32 323 27 478 34 674 38 913 36 190 30 052 27 670 26 141 24 521 22 369 17 519 11 836 9 585 8 160 5 089 3 262 2 650 396 644 Total 77 503 65 688 56 124 68 031 76 571 70 425 58 381 52 514 48 131 43 962 39 469 31 530 21 685 15 825 13 186 7 628 4 764 3 781 755 200 FS161: Letsemeng 0 -4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 2 088 1 876 1 850 1 828 1 963 1 911 1 692 1 409 1 145 1 027 915 674 568 354 237 155 80 78 19 852 Female 2 114 1 808 1 741 1 791 1 648 1 388 1 330 1 258 1 186 1 059 927 756 573 378 335 233 126 125 18 777 Total 4 202 3 684 3 592 3 618 3 612 3 298 3 022 2 668 2 332 2 086 1 843 1 430 1 141 732 572 388 206 203 38 628 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa FS162: Kopanong 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS164: Naledi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 64 Male 2 654 2 513 2 138 2 208 2 323 2 255 1 779 1 509 1 451 1 209 1 039 934 746 509 372 228 124 93 24 083 Male 1 469 1 347 1 265 1 266 1 138 864 794 597 602 444 368 380 300 210 170 108 39 48 11 409 Female Total 2 643 2 529 2 130 2 181 2 211 2 018 1 641 1 609 1 528 1 386 1 167 1 072 967 656 549 354 221 224 25 087 5 298 5 043 4 268 4 389 4 534 4 272 3 420 3 118 2 979 2 595 2 206 2 006 1 712 1 165 921 582 345 318 49 171 Female 1 390 1 300 1 138 1 271 1 170 1 014 887 835 675 587 564 545 459 328 299 225 110 109 12 905 Total 2 858 2 647 2 403 2 537 2 308 1 878 1 681 1 431 1 277 1 031 932 925 759 538 470 332 150 157 24 314 FS163: Mohokare 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male FS181: Masilonyana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 2 000 1 857 1 677 1 613 1 722 1 429 1 138 942 832 720 596 543 435 296 277 117 78 42 16 314 3 445 3 158 2 928 2 846 3 121 2 782 2 483 2 091 2 165 1 995 1 687 1 135 753 516 379 239 139 99 31 961 Female 1 926 1 954 1 576 1 635 1 645 1 538 1 146 1 133 971 885 755 703 581 374 402 307 167 135 17 831 Female 3 461 3 160 2 715 2 981 2 883 2 528 2 137 2 062 1 803 1 650 1 407 1 284 985 729 634 447 253 256 31 374 Total 3 926 3 811 3 253 3 248 3 367 2 967 2 284 2 075 1 803 1 605 1 351 1 245 1 016 670 679 424 245 177 34 146 Total 6 906 6 318 5 643 5 828 6 004 5 310 4 619 4 153 3 968 3 644 3 094 2 419 1 738 1 244 1 012 686 392 355 63 334 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa FS182: Tokologo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS184: Matjhabeng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 65 Male 1 659 1 573 1 423 1 311 1 354 1 181 1 134 1 023 842 716 630 515 360 306 153 128 63 40 14 410 Male 21 337 17 533 16 908 18 493 22 087 20 131 15 917 12 611 11 792 13 119 11 565 7 790 4 883 3 052 2 055 1 234 606 395 201 509 Female 1 555 1 410 1 423 1 485 1 275 1 101 1 019 1 015 785 746 658 613 473 329 218 216 124 130 14 576 Female 21 002 17 552 16 565 18 629 20 564 18 456 14 876 13 775 13 648 13 162 10 945 8 310 5 871 4 086 3 194 2 282 1 111 924 204 952 Total 3 214 2 983 2 846 2 796 2 629 2 283 2 153 2 037 1 628 1 463 1 287 1 128 833 635 371 344 186 170 28 986 Total 42 339 35 085 33 473 37 122 42 651 38 586 30 793 26 386 25 440 26 281 22 511 16 100 10 755 7 138 5 249 3 516 1 717 1 319 406 461 FS183: Tswelopele 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS185: Nala 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 2 894 2 630 2 516 2 124 2 459 2 052 1 531 1 254 1 157 1 046 873 794 539 413 233 174 107 68 22 864 Male 4 958 4 490 3 805 3 721 3 847 3 384 2 709 2 260 1 899 1 747 1 661 1 347 1 226 800 508 280 128 99 38 867 2 958 2 621 2 456 2 246 2 327 2 154 1 626 1 429 1 379 1 228 1 050 961 731 513 415 346 175 147 24 761 Female 5 127 4 279 3 876 3 787 3 944 3 577 2 885 2 533 2 277 2 089 1 898 1 834 1 372 1 053 724 543 309 245 42 353 Total 5 851 5 251 4 973 4 370 4 786 4 206 3 157 2 682 2 536 2 274 1 923 1 755 1 270 926 648 520 283 215 47 625 Total 10 085 8 768 7 681 7 509 7 791 6 961 5 594 4 793 4 176 3 836 3 560 3 181 2 597 1 853 1 232 823 437 344 81 220 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa FS191: Setsoto 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS193: Nketoana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 66 Male Female Total 6 591 6 159 5 431 5 675 5 259 4 700 3 783 3 203 2 573 2 227 1 949 1 692 1 276 858 549 355 193 159 52 633 6 559 6 145 5 256 5 651 5 455 5 057 4 288 3 775 3 344 3 088 2 569 2 401 1 922 1 437 1 176 885 506 451 59 964 13 150 12 305 10 688 11 325 10 714 9 758 8 071 6 978 5 917 5 316 4 517 4 093 3 199 2 294 1 726 1 240 699 609 112 597 Male Female Total 3 527 3 230 2 875 2 973 2 950 2 519 2 028 1 696 1 299 1 356 1 108 985 819 513 321 185 131 96 28 611 3 591 3 328 2 931 2 910 2 921 2 654 2 173 1 851 1 647 1 643 1 441 1 341 1 015 749 563 411 302 242 31 713 7 118 6 558 5 806 5 883 5 871 5 173 4 201 3 547 2 946 2 999 2 549 2 326 1 834 1 262 884 596 433 338 60 324 FS192: Dihlabeng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male FS194: Maluti a Phofung 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 6 752 6 236 6 019 5 549 6 031 6 027 5 054 4 212 3 610 2 984 2 608 2 023 1 546 1 032 646 397 255 171 61 153 7 034 6 160 5 660 5 685 6 049 6 135 5 364 4 692 4 171 3 897 3 181 2 741 2 293 1 461 1 154 883 535 455 67 551 Female 19 604 18 480 17 256 19 676 16 468 12 389 9 446 7 958 6 848 6 302 5 198 4 314 3 457 2 313 1 552 978 517 453 153 209 19 386 18 365 16 605 19 274 17 915 15 420 12 157 10 694 10 336 9 613 8 243 7 190 5 400 3 850 2 995 2 357 1 524 1 252 182 575 Total 13 786 12 396 11 679 11 235 12 080 12 162 10 418 8 904 7 781 6 881 5 789 4 764 3 839 2 493 1 800 1 280 790 627 128 704 Total 38 991 36 845 33 861 38 950 34 383 27 809 21 603 18 652 17 184 15 914 13 441 11 504 8 856 6 163 4 547 3 335 2 041 1 705 335 784 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa FS195: Phumelela 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS201: Moqhaka 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 67 Male 2 616 2 545 2 389 2 263 2 340 1 971 1 741 1 408 1 240 1 063 969 855 643 414 323 201 97 86 23 162 Male 8 135 7 076 6 627 7 360 8 209 7 231 6 220 5 412 5 118 4 778 4 077 3 077 2 341 1 548 1 025 644 340 258 79 477 Female 2 596 2 627 2 363 2 284 2 306 1 991 1 584 1 460 1 323 1 314 1 219 1 005 786 563 476 332 216 164 24 611 Female 8 188 6 945 6 390 7 086 7 165 6 615 5 796 5 333 4 767 4 777 4 325 3 785 3 197 2 161 1 697 1 320 814 693 81 055 Total 5 212 5 172 4 752 4 548 4 645 3 962 3 324 2 868 2 563 2 377 2 188 1 861 1 429 977 799 533 313 250 47 772 Total 16 324 14 021 13 018 14 445 15 374 13 846 12 016 10 744 9 885 9 555 8 403 6 861 5 538 3 709 2 722 1 964 1 155 951 160 532 FS196: Mantsopa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total FS203: Ngwathe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 049 2 732 2 425 2 576 2 407 2 289 1 799 1 450 1 324 1 095 895 824 580 400 282 130 84 62 24 402 Male Female 2 946 2 638 2 427 2 540 2 434 2 250 1 851 1 673 1 470 1 372 1 242 1 130 862 557 494 346 218 203 26 654 Female 6 804 5 991 5 364 5 357 5 632 5 150 4 192 3 439 3 100 2 656 2 359 2 244 1 767 1 324 935 564 314 231 57 424 6 700 6 018 5 405 5 391 5 506 5 091 4 280 3 948 3 560 3 498 2 942 2 857 2 272 1 938 1 419 1 057 631 583 63 096 Total 5 994 5 370 4 852 5 116 4 841 4 540 3 650 3 123 2 794 2 467 2 137 1 954 1 443 957 776 476 302 265 51 056 Total 13 504 12 009 10 769 10 749 11 138 10 242 8 472 7 386 6 660 6 153 5 301 5 101 4 039 3 263 2 354 1 621 944 814 120 520 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa FS204: Metsimaholo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MAN: Mangaung 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 68 Male 7 828 6 255 5 843 6 375 8 534 9 038 7 707 6 243 5 028 4 056 3 319 2 666 1 968 1 234 752 392 222 177 77 636 Male 37 636 32 930 30 565 35 116 43 249 37 755 30 767 25 590 22 012 17 637 14 806 11 280 8 506 5 745 3 917 2 325 1 253 1 098 362 186 Female 7 573 6 186 5 552 6 156 7 106 7 075 6 105 5 171 4 658 4 126 3 360 2 670 2 001 1 418 1 024 653 355 281 71 472 Female 37 712 32 716 29 262 35 840 41 397 35 550 28 594 26 952 24 835 21 874 18 265 14 969 11 929 8 445 6 611 4 798 2 828 2 668 385 245 Total 15 401 12 441 11 395 12 532 15 639 16 113 13 812 11 414 9 686 8 182 6 679 5 337 3 969 2 652 1 776 1 045 578 458 149 108 Total 75 348 65 646 59 827 70 956 84 646 73 305 59 360 52 542 46 847 39 511 33 071 26 249 20 435 14 190 10 528 7 123 4 080 3 766 747 431 FS205: Mafube 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total GT421: Emfuleni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 174 3 080 2 919 2 749 2 822 2 504 2 102 1 642 1 383 1 265 1 129 957 690 548 353 227 159 103 27 805 Male Female 3 214 3 088 2 803 2 993 2 643 2 494 1 987 1 837 1 594 1 556 1 419 1 227 942 692 665 403 300 213 30 071 Female 35 524 29 017 27 881 31 327 40 016 36 578 31 135 26 682 22 322 19 091 17 105 13 825 9 935 6 237 4 024 2 241 1 099 825 354 862 35 700 29 434 26 870 32 556 39 200 34 253 29 446 25 938 23 169 22 167 19 433 15 904 11 703 7 647 5 739 3 755 2 165 1 722 366 800 Total 6 388 6 168 5 722 5 742 5 465 4 998 4 089 3 478 2 977 2 820 2 548 2 184 1 632 1 240 1 018 630 459 316 57 876 Total 71 223 58 451 54 751 63 883 79 217 70 831 60 580 52 620 45 491 41 258 36 538 29 729 21 638 13 883 9 763 5 997 3 264 2 546 721 663 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa GT422: Midvaal 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total GT481: Mogale City 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 69 Male 4 176 3 555 3 454 3 633 4 693 5 235 4 406 4 155 3 529 2 960 2 676 2 176 1 744 1 219 794 441 208 124 49 178 Male 17 052 13 539 12 626 13 682 21 915 21 665 18 374 15 574 12 437 10 491 8 777 6 878 4 830 2 961 1 995 1 111 648 425 184 981 Female 4 203 3 466 3 250 3 983 4 198 4 254 3 643 3 549 3 267 2 953 2 418 2 067 1 643 1 277 871 510 288 283 46 123 Female 16 858 13 656 12 282 13 787 17 702 19 109 15 931 13 778 12 334 11 121 9 262 7 271 5 000 3 339 2 511 1 574 1 086 841 177 441 Total 8 379 7 021 6 704 7 616 8 892 9 490 8 048 7 704 6 795 5 913 5 094 4 243 3 387 2 496 1 666 950 495 407 95 301 Total 33 910 27 195 24 908 27 469 39 617 40 774 34 305 29 352 24 771 21 612 18 038 14 150 9 830 6 300 4 507 2 685 1 734 1 266 362 422 GT423: Lesedi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total GT482: Randfontein 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 5 019 4 245 3 904 4 173 5 247 5 817 4 740 4 010 3 325 2 854 2 278 1 929 1 449 951 688 348 200 142 51 317 Male Female 4 943 4 048 3 723 4 105 4 601 4 617 3 824 3 447 3 142 2 775 2 433 1 990 1 501 1 101 864 566 304 221 48 203 Female 7 010 5 877 5 662 5 778 7 591 7 838 6 946 5 854 5 006 4 708 4 238 3 218 2 131 1 303 840 481 247 158 74 885 6 961 5 914 5 680 5 823 7 179 7 121 6 013 5 612 5 322 4 881 4 260 3 189 2 140 1 593 1 122 780 468 342 74 400 Total 9 962 8 293 7 626 8 278 9 848 10 434 8 563 7 457 6 467 5 628 4 711 3 919 2 949 2 052 1 552 914 504 363 99 520 Total 13 971 11 791 11 342 11 600 14 770 14 959 12 959 11 466 10 328 9 589 8 498 6 408 4 271 2 896 1 962 1 261 715 499 149 286 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa GT483: Westonaria 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total EKU: Ekurhuleni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 70 Male 5 619 4 125 3 840 4 122 6 569 7 778 6 365 5 270 4 752 4 906 3 838 2 080 843 473 296 155 63 58 61 152 Male 159 573 120 401 109 665 117 978 178 087 206 472 177 151 143 250 111 303 88 126 70 704 54 877 37 476 22 858 14 721 7 912 4 236 2 933 1 627 724 Female 5 669 4 215 3 933 4 232 5 768 6 123 4 856 4 007 3 341 2 826 2 090 1 290 873 550 369 227 145 103 50 615 Female 157 404 118 902 106 519 120 727 168 641 180 575 144 082 121 052 100 649 88 112 72 718 56 938 40 537 27 222 19 702 12 802 8 115 6 052 1 550 747 Total 11 288 8 339 7 773 8 354 12 337 13 901 11 220 9 276 8 093 7 732 5 927 3 370 1 716 1 022 665 382 208 161 111 767 Total 316 977 239 303 216 183 238 705 346 727 387 047 321 232 264 302 211 951 176 239 143 422 111 814 78 014 50 080 34 423 20 715 12 352 8 985 3 178 470 GT484: Merafong City 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total JHB: City of Johannesburg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 9 613 7 448 6 999 7 254 10 328 11 872 10 350 9 323 9 068 8 845 7 220 4 053 1 950 1 156 827 414 269 168 107 157 9 507 7 303 6 749 7 737 9 632 9 920 8 111 6 867 6 017 5 606 4 130 2 947 2 048 1 336 1 061 672 419 301 90 363 Male Female 218 590 160 226 139 589 154 707 252 752 296 584 251 469 200 038 150 576 114 646 91 062 70 634 49 644 30 348 20 271 11 638 6 959 5 405 2 225 137 214 133 158 239 138 035 160 409 249 660 276 223 220 565 177 828 143 170 121 831 101 871 80 898 58 040 37 559 28 527 19 411 12 630 10 662 2 209 690 Total 19 119 14 751 13 748 14 991 19 960 21 792 18 461 16 190 15 086 14 451 11 349 6 999 3 999 2 491 1 888 1 087 688 469 197 520 Total 432 722 318 465 277 624 315 116 502 412 572 807 472 034 377 866 293 746 236 477 192 933 151 531 107 684 67 906 48 797 31 049 19 589 16 068 4 434 827 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa TSH: City of Tshwane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 71 Male Female 137 848 106 232 97 308 112 418 170 994 174 314 145 298 121 415 98 807 78 813 65 524 51 149 35 611 23 244 15 799 9 331 5 513 3 866 1 453 483 KZN214: UMuziwabantu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 7 159 6 456 6 367 6 326 4 126 3 067 2 117 1 844 1 446 1 415 1 134 970 931 496 412 207 162 120 44 754 136 018 105 659 94 045 116 160 169 851 164 499 132 071 114 373 98 319 85 378 70 816 55 090 40 576 29 258 21 887 14 984 10 398 8 624 1 468 005 Female 6 979 6 107 5 995 6 267 4 506 3 816 2 769 2 524 2 332 2 369 1 838 1 444 1 394 1 004 998 709 489 262 51 802 Total 273 866 211 891 191 352 228 577 340 844 338 813 277 369 235 789 197 126 164 191 136 340 106 239 76 187 52 501 37 686 24 315 15 912 12 490 2 921 488 Total 14 139 12 563 12 362 12 593 8 632 6 882 4 885 4 368 3 779 3 784 2 971 2 413 2 325 1 499 1 410 915 651 382 96 556 KZN213: Umzumbe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN215: Ezingoleni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 10 836 9 801 9 729 10 238 7 344 5 241 3 702 3 107 2 535 2 544 2 256 2 153 2 103 1 181 985 452 335 277 74 819 Male 10 600 9 578 9 191 10 007 7 427 5 979 4 274 3 861 3 872 4 270 3 660 2 988 3 038 2 194 1 855 1 390 1 253 719 86 156 Female 3 613 3 261 3 121 3 372 2 326 1 753 1 308 1 076 774 784 688 624 564 305 269 133 77 55 24 101 3 718 3 106 2 960 3 255 2 469 2 089 1 671 1 463 1 195 1 339 1 187 966 885 670 629 357 287 192 28 439 Total 21 435 19 379 18 919 20 245 14 771 11 219 7 976 6 968 6 407 6 814 5 916 5 141 5 141 3 375 2 841 1 842 1 588 996 160 975 Total 7 331 6 367 6 081 6 626 4 795 3 842 2 979 2 538 1 969 2 123 1 875 1 590 1 448 975 898 490 364 247 52 540 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN216: Hibiscus Coast 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN212: Umdoni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 72 Male 13 641 11 359 11 565 12 949 12 746 12 713 8 805 7 641 5 809 5 075 4 329 3 942 3 463 2 449 2 140 1 294 753 458 121 131 Male 4 002 3 311 3 336 3 749 4 128 3 994 2 906 2 538 1 941 1 938 1 492 1 328 1 176 921 724 393 271 146 38 294 Female Total 13 373 11 138 11 183 13 403 13 177 13 262 9 910 8 406 7 061 6 947 6 025 5 017 4 665 3 669 3 144 2 127 1 451 1 047 135 004 27 014 22 497 22 748 26 352 25 923 25 975 18 715 16 047 12 870 12 022 10 353 8 959 8 127 6 118 5 285 3 421 2 204 1 505 256 135 Female Total 3 824 3 348 3 317 3 818 4 089 3 737 2 943 2 593 2 217 2 213 1 833 1 568 1 457 1 314 970 638 431 271 40 581 7 825 6 659 6 653 7 566 8 217 7 732 5 849 5 131 4 157 4 151 3 325 2 896 2 633 2 235 1 694 1 031 702 417 78 875 KZN211: Vulamehlo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN221: uMshwathi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 5 224 4 578 4 751 4 753 3 535 2 496 1 744 1 645 1 237 1 344 1 265 1 004 1 032 582 411 203 154 104 36 062 Male 6 424 5 582 5 769 6 101 5 360 4 508 3 444 2 971 2 160 2 031 1 714 1 487 1 243 689 475 223 163 139 50 484 5 109 4 508 4 361 4 751 3 728 2 915 2 197 1 948 1 832 1 982 1 868 1 432 1 349 1 037 847 608 523 346 41 341 Female 6 160 5 464 5 482 6 150 5 478 4 641 3 582 3 218 2 657 2 758 2 478 2 033 1 955 1 192 983 703 518 438 55 890 Total 10 333 9 087 9 112 9 504 7 263 5 411 3 941 3 593 3 070 3 326 3 133 2 436 2 380 1 619 1 258 811 677 450 77 403 Total 12 584 11 047 11 251 12 251 10 838 9 149 7 026 6 189 4 817 4 789 4 192 3 520 3 198 1 880 1 458 926 681 577 106 374 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 73 KZN222: uMngeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male KZN224: Impendle 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 4 145 3 670 3 697 4 579 4 697 4 726 3 756 3 494 2 687 1 989 1 635 1 464 1 247 951 816 599 411 286 44 849 2 243 2 132 2 075 2 060 1 501 1 051 708 628 514 502 453 525 446 241 182 95 75 59 15 493 Female 3 893 3 586 3 576 4 205 4 511 4 619 3 821 3 566 2 978 2 616 2 113 1 944 1 818 1 279 1 203 885 677 570 47 861 Female 2 163 2 000 1 865 1 990 1 524 1 191 872 724 727 774 807 803 682 453 365 301 227 145 17 612 Total 8 038 7 256 7 273 8 785 9 208 9 345 7 578 7 061 5 665 4 606 3 747 3 409 3 065 2 230 2 018 1 484 1 088 856 92 710 Total 4 406 4 132 3 940 4 050 3 025 2 241 1 581 1 352 1 242 1 276 1 259 1 328 1 128 695 547 396 302 204 33 105 KZN223: Mpofana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male KZN225: The Msunduzi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 2 099 1 853 1 878 1 946 2 061 2 007 1 530 1 224 911 769 599 544 480 236 150 95 63 41 18 487 29 827 26 229 27 002 30 645 35 701 31 887 24 548 21 998 16 464 12 816 10 563 8 967 7 142 4 317 2 907 1 693 1 031 718 294 454 Female 2 073 1 821 1 768 1 771 2 008 2 013 1 545 1 311 1 183 969 819 706 627 326 243 154 144 135 19 617 Female 29 351 25 923 26 281 31 392 35 977 32 610 25 106 23 048 19 012 17 401 14 234 12 871 10 556 6 948 5 302 3 616 2 563 1 892 324 082 Total 4 172 3 675 3 646 3 717 4 069 4 020 3 075 2 535 2 094 1 738 1 418 1 249 1 107 562 393 249 206 176 38 103 Total 59 178 52 152 53 283 62 036 71 678 64 496 49 655 45 046 35 476 30 218 24 796 21 838 17 698 11 264 8 209 5 308 3 594 2 611 618 536 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN226: Mkhambathini 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN232: Emnambithi/Lady smith 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 74 Male Female 3 677 3 208 3 174 3 441 3 423 3 011 2 186 1 805 1 366 1 237 955 961 773 459 255 152 119 67 30 270 3 720 3 143 3 085 3 306 3 395 3 108 2 306 1 969 1 656 1 609 1 331 1 194 1 042 625 528 333 305 216 32 872 Male Female 14 406 12 602 12 720 12 305 11 267 10 907 8 240 6 924 5 251 4 397 3 720 3 182 2 285 1 272 1 022 509 349 259 111 617 14 504 12 740 12 071 12 452 12 291 11 695 9 124 7 474 6 339 6 105 5 489 4 619 3 724 2 416 1 942 1 257 860 719 125 820 Total 7 397 6 351 6 259 6 747 6 818 6 119 4 492 3 774 3 022 2 846 2 286 2 155 1 815 1 084 783 486 424 284 63 142 Total 28 910 25 342 24 791 24 757 23 557 22 602 17 364 14 398 11 590 10 502 9 210 7 801 6 008 3 688 2 964 1 766 1 210 978 237 437 KZN227: Richmond 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN233: Indaka 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 4 138 3 718 3 515 3 369 3 421 3 112 2 424 2 033 1 541 1 170 938 832 694 366 285 134 91 101 31 883 Male 8 366 7 359 6 972 6 748 3 904 2 591 1 918 1 662 1 191 1 299 1 081 980 972 518 452 220 124 154 46 509 3 888 3 570 3 233 3 387 3 340 2 936 2 306 2 124 1 759 1 699 1 268 1 293 964 622 519 383 373 248 33 910 Female 7 943 7 106 6 652 6 883 5 146 4 010 2 794 2 247 2 025 2 254 1 963 1 766 1 777 1 189 1 053 776 575 448 56 607 Total 8 026 7 288 6 748 6 756 6 760 6 047 4 730 4 157 3 300 2 869 2 206 2 125 1 658 989 804 517 464 349 65 793 Total 16 308 14 464 13 623 13 631 9 049 6 602 4 712 3 909 3 216 3 553 3 044 2 747 2 750 1 707 1 505 996 700 602 103 116 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN234: Umtshezi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN236: Imbabazane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 75 Male 5 109 4 626 4 519 4 218 4 053 3 563 2 600 2 222 1 829 1 595 1 210 1 057 876 466 337 150 102 87 38 615 Male 7 900 6 861 6 724 6 867 5 296 4 286 2 906 2 511 1 880 1 823 1 592 1 449 1 198 621 443 202 139 120 52 817 Female 5 014 4 623 4 678 4 467 4 142 4 072 3 061 2 829 2 411 2 331 1 662 1 504 1 407 801 614 359 313 251 44 538 Female 7 600 6 740 6 551 6 958 5 665 5 018 3 629 2 897 2 537 2 572 2 291 2 063 2 045 1 139 978 616 533 425 60 256 Total 10 122 9 249 9 197 8 684 8 194 7 635 5 661 5 050 4 240 3 925 2 872 2 561 2 282 1 267 950 510 415 338 83 153 Total 15 500 13 600 13 276 13 825 10 961 9 305 6 535 5 408 4 417 4 395 3 883 3 512 3 243 1 759 1 420 818 672 545 113 073 KZN235: Okhahlamba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN271: Umhlabuyalin gana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 9 399 8 447 8 488 8 110 5 404 4 381 3 342 2 878 2 283 2 026 1 698 1 635 1 449 735 642 342 203 164 61 624 9 370 8 287 7 836 7 794 6 325 5 760 4 254 3 351 3 191 2 915 2 497 2 436 2 053 1 403 1 149 811 595 417 70 443 18 769 16 734 16 323 15 904 11 729 10 141 7 596 6 229 5 474 4 941 4 195 4 071 3 502 2 138 1 791 1 153 799 581 132 068 Male Female Total 11 291 10 181 10 697 10 014 6 855 4 699 3 346 3 060 2 586 2 347 1 739 1 374 1 130 735 735 326 373 281 71 769 10 989 9 794 9 982 10 030 8 057 6 614 5 261 4 465 4 170 3 682 2 777 1 876 1 790 1 215 1 433 1 082 1 087 663 84 967 22 281 19 974 20 679 20 044 14 912 11 313 8 608 7 525 6 756 6 030 4 515 3 250 2 920 1 949 2 168 1 408 1 460 945 156 736 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 76 KZN272: Jozini 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 13 855 12 414 12 725 12 399 8 708 5 772 4 084 3 291 2 724 2 454 2 264 1 767 1 254 802 695 342 324 243 86 116 Female 13 490 12 166 12 301 12 470 10 321 8 442 5 993 4 842 4 385 3 899 3 131 2 240 1 783 1 229 1 272 969 873 580 100 386 Total 27 345 24 579 25 025 24 869 19 029 14 215 10 077 8 133 7 109 6 353 5 396 4 007 3 037 2 032 1 966 1 311 1 197 823 186 502 KZN273: The Big 5 False Bay 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN274: Hlabisa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total KZN275: Mtubatuba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 5 373 4 727 4 830 5 030 3 154 2 140 1 381 1 124 927 888 830 775 638 415 292 161 145 113 32 942 5 417 4 627 4 778 4 826 3 908 2 953 1 973 1 684 1 502 1 557 1 385 1 134 900 630 633 442 343 289 38 983 10 790 9 353 9 608 9 856 7 062 5 093 3 354 2 808 2 430 2 445 2 215 1 909 1 539 1 045 926 603 487 402 71 925 Male 2 343 2 092 2 283 2 220 1 628 1 406 978 777 602 526 463 360 286 159 153 88 82 58 16 505 Male Female 2 323 2 076 2 109 2 104 1 939 1 724 1 269 1 021 863 809 594 498 430 294 281 186 144 89 18 753 Female 12 765 11 175 11 112 10 931 8 307 6 259 4 301 3 568 2 653 2 461 2 137 1 636 1 333 788 849 429 354 256 81 314 12 339 11 022 10 655 11 103 9 585 8 303 5 921 4 616 3 859 3 595 3 523 2 540 1 932 1 374 1 399 994 812 539 94 111 Total 4 666 4 168 4 392 4 324 3 567 3 129 2 247 1 798 1 465 1 335 1 056 858 717 453 434 274 226 147 35 258 Total 25 104 22 197 21 767 22 034 17 892 14 563 10 222 8 184 6 511 6 057 5 661 4 176 3 265 2 162 2 247 1 423 1 166 795 175 425 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN282: uMhlathuze 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN281: Mfolozi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 77 Male 18 252 15 354 15 735 16 767 19 534 19 217 14 076 11 847 8 479 6 703 5 696 4 430 2 942 1 641 1 094 494 354 326 162 942 Male 8 039 7 239 7 098 7 292 6 338 5 554 4 103 3 136 2 128 1 942 1 817 1 437 1 059 654 523 249 204 208 59 020 Female 18 070 15 402 15 296 18 542 21 450 19 681 14 177 11 052 8 757 7 725 6 413 4 626 3 554 2 161 1 785 1 178 985 661 171 517 Female 8 176 6 994 6 802 7 049 6 901 6 072 4 189 3 162 2 513 2 683 2 565 1 755 1 380 947 928 651 652 447 63 869 Total 36 322 30 756 31 031 35 309 40 984 38 899 28 253 22 900 17 236 14 428 12 109 9 056 6 496 3 803 2 879 1 672 1 339 987 334 459 Total 16 215 14 234 13 900 14 342 13 239 11 626 8 292 6 298 4 641 4 626 4 382 3 192 2 438 1 601 1 451 900 856 654 122 889 KZN286: Nkandla 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN283: Ntambanana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 7 924 7 422 7 847 7 733 4 535 2 943 2 008 1 718 1 461 1 402 1 202 1 373 1 176 741 519 303 190 151 50 647 8 215 7 313 7 380 7 921 5 667 4 497 3 225 2 610 2 470 2 703 2 401 2 329 1 952 1 330 1 339 938 792 686 63 770 Male Female 5 176 4 684 4 823 5 061 3 460 2 467 1 635 1 345 1 019 1 041 928 831 654 397 328 156 174 100 34 280 5 184 4 633 4 674 4 864 3 999 3 182 2 196 1 762 1 481 1 719 1 727 1 087 1 008 658 695 502 397 288 40 057 Total 16 138 14 735 15 228 15 654 10 203 7 440 5 233 4 328 3 931 4 105 3 603 3 702 3 128 2 071 1 858 1 240 982 837 114 416 Total 10 361 9 317 9 497 9 925 7 460 5 648 3 831 3 108 2 500 2 761 2 655 1 918 1 662 1 055 1 023 658 571 388 74 336 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN284: uMlalazi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN431: Ingwe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 78 Male 14 297 12 799 13 145 13 351 9 742 7 068 5 057 4 434 3 555 3 336 2 791 2 552 2 379 1 469 1 121 538 419 355 98 407 Male 7 403 6 516 6 491 6 293 4 397 3 210 2 214 1 955 1 591 1 491 1 371 1 212 1 129 608 395 208 169 99 46 752 Female Total 14 217 12 532 12 543 13 235 11 168 9 006 6 480 5 578 5 000 5 250 4 351 3 689 4 083 2 127 2 281 1 581 1 211 863 115 194 28 515 25 331 25 688 26 586 20 910 16 074 11 537 10 012 8 554 8 586 7 142 6 241 6 461 3 596 3 402 2 119 1 631 1 218 213 601 Female Total 7 151 6 559 5 858 6 001 4 840 3 932 2 991 2 569 2 419 2 385 1 972 1 877 1 649 1 173 895 658 500 367 53 795 14 554 13 075 12 349 12 295 9 238 7 142 5 205 4 525 4 010 3 876 3 342 3 089 2 778 1 780 1 289 867 669 466 100 548 KZN285: Mthonjaneni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN432: Kwa Sani 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 3 339 2 944 2 992 2 771 2 180 1 732 1 259 971 833 773 660 536 430 236 172 106 73 95 22 102 Male 659 528 443 524 768 917 612 566 385 310 252 230 170 160 87 37 24 15 6 688 3 344 2 864 2 851 2 767 2 530 2 204 1 580 1 273 1 156 1 204 951 781 639 374 451 300 259 190 25 716 Female 579 476 437 456 628 702 522 512 435 343 287 239 207 164 82 67 43 30 6 210 Total 6 683 5 808 5 843 5 538 4 710 3 936 2 838 2 244 1 990 1 977 1 611 1 316 1 068 611 623 406 331 285 47 818 Total 1 238 1 004 880 980 1 396 1 619 1 135 1 078 820 654 540 469 377 324 169 104 66 45 12 898 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN433: Greater Kokstad 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN435: Umzimkhulu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 79 Male 3 688 3 223 3 141 3 210 3 639 3 703 2 951 2 449 1 749 1 323 1 153 759 455 259 174 82 38 34 32 032 Male 13 420 12 027 11 862 11 997 7 343 4 803 3 598 3 075 2 452 2 390 2 267 1 828 1 738 1 185 760 497 326 181 81 749 Female 3 783 3 116 3 224 3 485 3 828 3 559 2 801 2 416 2 057 1 675 1 288 923 606 417 329 210 137 94 33 950 Female 13 076 11 853 11 377 12 224 9 102 6 814 5 266 4 323 4 096 3 924 3 607 3 229 2 756 2 144 1 690 1 477 1 000 593 98 553 Total 7 471 6 339 6 365 6 695 7 467 7 262 5 752 4 865 3 806 2 998 2 442 1 682 1 061 676 503 292 176 128 65 981 Total 26 496 23 880 23 239 24 222 16 445 11 618 8 865 7 398 6 548 6 314 5 873 5 057 4 494 3 329 2 450 1 973 1 326 775 180 302 KZN434: Ubuhlebezw e 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN241: Endumeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 6 970 6 185 6 157 6 225 4 654 3 563 2 480 2 147 1 727 1 696 1 392 1 313 1 168 599 435 225 171 138 47 246 6 761 6 080 5 836 6 177 4 820 4 070 2 916 2 645 2 595 2 667 2 252 2 115 1 728 1 195 888 607 595 498 54 445 13 731 12 264 11 993 12 403 9 474 7 633 5 396 4 792 4 322 4 363 3 644 3 428 2 896 1 795 1 323 832 766 636 101 691 Male Female Total 3 427 3 298 3 439 3 582 3 417 3 134 2 325 2 012 1 609 1 374 1 121 953 730 537 327 179 92 82 31 637 3 440 3 449 3 308 3 467 3 164 3 081 2 224 2 049 1 791 1 831 1 371 1 186 939 703 517 335 201 170 33 225 6 867 6 746 6 747 7 049 6 582 6 215 4 548 4 061 3 399 3 206 2 492 2 139 1 668 1 240 843 514 294 252 64 862 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN242: Nqutu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN245: Umvoti 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 80 Male 12 403 11 638 11 686 11 085 6 561 4 497 3 146 2 640 2 146 2 016 1 653 1 816 1 491 961 677 342 221 216 75 194 Male 6 541 5 737 6 134 5 987 4 375 3 448 2 547 2 190 1 823 1 634 1 370 1 242 1 038 640 425 199 142 132 45 601 Female 12 389 11 256 10 781 10 801 8 394 6 503 4 771 3 819 3 407 3 619 3 117 2 900 2 361 1 747 1 558 1 091 923 676 90 113 Female 6 683 5 857 5 975 6 285 5 421 4 644 3 684 3 151 2 846 2 968 2 326 2 057 1 700 1 312 940 540 510 593 57 491 Total 24 791 22 894 22 467 21 886 14 954 11 000 7 917 6 459 5 553 5 635 4 770 4 716 3 852 2 709 2 235 1 432 1 144 892 165 307 Total 13 225 11 593 12 109 12 271 9 796 8 091 6 231 5 340 4 669 4 602 3 695 3 299 2 738 1 952 1 366 738 652 724 103 093 KZN244: Msinga 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN252: Newcastle 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 13 946 12 792 12 577 11 636 5 600 3 748 2 875 2 590 2 115 2 037 1 657 1 630 1 531 946 655 299 285 227 77 143 Male 20 292 19 641 19 157 20 432 19 748 16 498 12 039 10 178 7 774 6 380 5 929 5 244 3 860 2 375 1 631 820 472 374 172 846 Female 13 972 12 431 11 951 12 094 8 334 6 937 5 240 4 565 3 962 4 112 3 180 3 266 3 125 2 034 1 859 1 121 1 233 1 018 100 433 Female 20 446 19 176 18 249 20 095 19 411 17 052 13 126 11 251 9 827 9 291 8 537 7 383 5 844 3 725 2 956 1 917 1 220 884 190 390 Total 27 918 25 223 24 528 23 730 13 934 10 684 8 114 7 154 6 077 6 149 4 837 4 896 4 656 2 980 2 514 1 420 1 519 1 245 177 577 Total 40 738 38 816 37 406 40 527 39 160 33 550 25 165 21 430 17 601 15 671 14 466 12 627 9 705 6 100 4 587 2 737 1 692 1 259 363 236 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN253: Emadlangeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN263: Abaqulusi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 81 Male 2 095 2 166 2 112 1 950 1 703 1 457 1 230 1 044 717 657 587 607 399 310 207 88 86 70 17 486 Male 13 426 12 820 12 862 12 783 10 220 8 541 6 203 5 047 3 893 3 375 3 044 2 682 2 077 1 227 1 067 549 325 333 100 474 Female 2 053 2 006 1 916 1 767 1 495 1 386 1 087 990 834 740 673 587 436 297 276 179 142 93 16 956 Female 13 423 12 546 12 325 12 495 10 563 9 374 6 753 5 613 4 979 5 036 4 342 3 886 2 867 1 858 1 758 1 192 923 653 110 586 Total 4 148 4 173 4 027 3 717 3 197 2 843 2 317 2 034 1 551 1 398 1 260 1 194 835 608 482 266 228 163 34 442 Total 26 848 25 366 25 187 25 278 20 783 17 915 12 956 10 659 8 872 8 411 7 386 6 568 4 945 3 085 2 825 1 741 1 248 986 211 060 KZN254: Dannhauser 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN261: eDumbe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 6 778 6 331 6 497 6 579 4 977 3 557 2 576 2 089 1 598 1 615 1 480 1 414 1 170 719 482 251 149 117 48 380 Male 5 701 5 431 5 412 4 998 3 809 2 769 1 986 1 647 1 377 1 191 1 071 961 668 492 381 217 210 125 38 447 6 958 6 448 6 054 6 289 5 060 4 106 3 086 2 404 2 109 2 213 2 058 1 936 1 631 1 133 962 629 376 329 53 781 Female 5 799 5 399 5 065 4 755 4 257 3 508 2 486 1 906 1 844 1 805 1 718 1 400 995 720 771 438 411 327 43 605 Total 13 735 12 779 12 552 12 868 10 037 7 663 5 663 4 493 3 707 3 827 3 538 3 350 2 801 1 851 1 444 881 525 446 102 161 Total 11 500 10 830 10 478 9 753 8 066 6 276 4 472 3 553 3 221 2 996 2 790 2 362 1 663 1 212 1 152 655 621 452 82 053 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa KZN262: UPhongolo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN266: Ulundi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 82 Male Female Total 8 838 8 042 8 155 7 961 6 380 4 997 3 354 2 615 2 021 1 635 1 665 1 315 970 613 538 263 184 182 59 728 8 962 8 120 7 910 7 897 7 087 5 766 3 894 3 192 2 793 2 554 2 318 1 873 1 467 992 1 022 685 573 406 67 510 17 800 16 162 16 065 15 858 13 467 10 762 7 247 5 806 4 814 4 188 3 983 3 188 2 438 1 605 1 560 948 757 588 127 238 Male Female Total 13 034 12 193 12 466 12 123 8 223 6 028 3 938 3 332 2 577 2 570 2 389 1 982 1 596 909 715 401 274 312 85 061 13 634 12 311 11 973 12 170 10 098 8 398 5 756 4 715 4 158 4 386 3 804 3 276 2 460 1 425 1 600 1 194 1 021 878 103 255 26 668 24 504 24 439 24 293 18 321 14 426 9 694 8 047 6 735 6 956 6 192 5 258 4 057 2 334 2 315 1 595 1 295 1 189 188 317 KZN265: Nongoma 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total KZN294: Maphumulo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 14 885 12 893 13 613 13 708 8 467 5 393 3 442 2 922 2 360 2 182 2 167 1 979 1 664 1 008 851 416 301 239 88 490 14 623 12 860 12 987 13 361 10 714 8 103 5 458 4 316 3 947 4 350 3 318 3 138 2 684 1 765 1 718 1 273 1 067 737 106 418 29 508 25 753 26 600 27 069 19 181 13 496 8 900 7 238 6 307 6 532 5 485 5 117 4 348 2 772 2 569 1 690 1 368 975 194 908 Male Female Total 7 099 6 234 6 785 6 538 3 557 2 303 1 627 1 516 1 230 1 204 1 084 1 170 1 164 636 497 236 189 153 43 221 6 834 6 078 6 273 6 766 4 689 3 459 2 476 2 141 2 059 2 273 2 030 1 860 1 984 1 254 1 171 850 754 553 53 503 13 933 12 312 13 057 13 304 8 246 5 762 4 103 3 657 3 289 3 477 3 114 3 030 3 147 1 890 1 668 1 086 942 707 96 724 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 83 KZN291: Mandeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male KZN293: Ndwedwe 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 8 864 7 283 7 203 7 754 7 436 6 314 4 712 3 942 2 904 2 428 1 907 1 588 1 226 753 480 251 165 122 65 332 9 593 8 332 8 727 8 967 6 391 4 777 3 535 3 074 2 260 2 312 2 047 1 925 1 742 1 011 774 373 248 208 66 296 Female 8 786 7 209 6 897 7 675 7 763 7 420 5 457 4 355 3 544 3 493 2 602 2 013 1 941 1 099 969 706 482 334 72 746 Female 9 310 8 243 8 043 8 832 6 905 5 470 3 866 3 294 3 030 3 340 3 106 2 717 2 577 1 811 1 429 987 918 649 74 524 Total 17 650 14 492 14 100 15 429 15 199 13 734 10 169 8 297 6 448 5 921 4 510 3 601 3 167 1 852 1 449 957 647 456 138 078 Total 18 903 16 575 16 770 17 799 13 296 10 247 7 401 6 368 5 290 5 652 5 153 4 642 4 319 2 822 2 203 1 359 1 166 857 140 820 KZN292: KwaDukuza 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total ETH: eThekwini 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 13 320 10 539 10 023 10 241 13 096 13 995 10 372 8 687 6 298 4 673 3 662 2 847 2 483 1 614 1 146 582 338 245 114 160 Male 165 537 135 124 136 579 156 287 207 947 203 289 154 042 125 590 96 104 78 473 65 340 53 412 42 673 26 164 16 971 9 516 5 371 3 988 1 682 406 13 211 10 369 9 570 10 818 12 873 12 716 9 598 8 201 6 669 5 630 4 475 3 666 3 157 2 189 1 691 1 006 672 516 117 028 Female 162 435 133 421 133 184 162 252 204 778 192 292 145 125 121 792 103 063 96 459 80 383 66 559 54 828 37 328 27 862 18 050 11 658 8 484 1 759 955 Total 26 531 20 908 19 592 21 059 25 969 26 710 19 970 16 888 12 967 10 302 8 138 6 513 5 640 3 803 2 837 1 588 1 010 761 231 187 Total 327 972 268 545 269 763 318 539 412 726 395 581 299 167 247 382 199 167 174 931 145 722 119 972 97 501 63 492 44 833 27 566 17 029 12 473 3 442 361 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM331: Greater Giyani 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM333: Greater Tzaneen 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 84 Male 16 074 14 594 14 623 16 205 12 012 7 297 5 122 4 208 3 539 3 273 2 708 2 300 1 866 1 425 1 341 736 459 343 108 124 Male 24 007 18 877 19 714 21 780 20 565 15 951 11 910 10 160 8 753 7 454 5 909 5 161 4 183 2 720 2 134 1 003 685 592 181 558 Female 16 068 14 591 13 818 15 848 13 407 10 782 8 594 7 982 6 598 6 289 5 454 3 908 2 836 2 644 2 871 1 854 1 448 1 102 136 094 Female 24 002 18 989 18 606 21 502 19 949 17 852 14 523 13 470 11 985 11 561 8 748 6 877 5 304 4 115 3 902 2 775 2 451 1 928 208 536 Total 32 143 29 186 28 441 32 053 25 418 18 079 13 715 12 191 10 137 9 562 8 162 6 208 4 701 4 069 4 212 2 590 1 907 1 445 244 217 Total 48 009 37 866 38 320 43 282 40 514 33 802 26 433 23 630 20 738 19 015 14 656 12 038 9 487 6 835 6 036 3 777 3 135 2 519 390 095 LIM332: Greater Letaba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male LIM334: BaPhalaborwa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 13 539 11 381 11 983 14 501 11 160 6 611 4 727 4 246 3 328 2 908 2 525 2 211 1 979 1 496 1 325 600 416 369 95 305 9 722 7 536 7 531 7 125 8 142 6 845 5 406 4 658 3 892 3 105 2 697 2 420 1 664 961 654 339 203 118 73 017 Female 13 597 11 577 11 311 13 775 10 972 8 924 7 193 6 522 6 001 5 679 4 482 3 723 3 133 2 964 2 936 1 827 1 508 1 273 117 396 Female 9 715 7 850 7 221 7 558 7 998 7 374 6 022 5 399 4 402 3 790 2 853 2 253 1 622 1 206 959 632 444 321 77 620 Total 27 135 22 958 23 294 28 276 22 132 15 535 11 919 10 767 9 329 8 587 7 007 5 934 5 112 4 460 4 261 2 428 1 924 1 642 212 701 Total 19 437 15 386 14 752 14 683 16 140 14 219 11 428 10 057 8 293 6 895 5 550 4 673 3 286 2 167 1 613 972 647 439 150 637 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM335: Maruleng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM343: Thulamela 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 85 Male 6 039 5 201 5 244 5 704 4 796 3 467 2 556 2 081 1 861 1 602 1 321 1 071 975 653 475 231 181 118 43 577 Male 39 250 34 960 35 680 40 554 32 275 20 525 14 513 11 874 10 299 9 422 7 373 5 946 5 109 3 592 2 967 1 723 1 451 1 138 278 650 Female 5 997 5 153 4 954 5 589 4 915 4 497 3 558 3 067 2 865 2 512 2 026 1 531 1 227 874 809 702 575 430 51 280 Female 39 096 35 095 33 795 39 455 32 433 25 761 22 002 20 223 17 082 16 599 13 672 10 246 8 171 5 885 5 069 5 687 5 267 4 275 339 812 Total 12 036 10 353 10 198 11 293 9 711 7 964 6 114 5 148 4 726 4 114 3 347 2 601 2 202 1 528 1 284 933 756 548 94 857 Total 78 346 70 055 69 475 80 009 64 708 46 286 36 516 32 096 27 381 26 020 21 045 16 192 13 280 9 477 8 037 7 409 6 717 5 413 618 462 LIM342: Mutale 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 6 029 5 794 6 025 6 099 4 241 2 605 1 955 1 611 1 505 1 365 1 056 828 704 485 447 282 235 281 41 546 Female 5 987 5 680 5 571 5 837 4 446 3 763 3 089 2 973 2 434 2 249 1 888 1 314 1 115 799 758 772 740 907 50 324 Total 12 017 11 474 11 596 11 936 8 687 6 367 5 045 4 584 3 939 3 614 2 944 2 143 1 820 1 284 1 205 1 054 975 1 188 91 870 LIM341: Musina 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 4 486 2 717 2 603 2 945 4 307 4 714 3 748 2 807 1 973 1 279 981 701 485 327 175 89 88 81 34 506 Female 4 253 2 738 2 461 2 902 4 235 4 593 3 352 2 818 1 892 1 332 1 014 738 502 321 269 185 124 126 33 853 Total 8 739 5 455 5 064 5 847 8 542 9 307 7 100 5 625 3 864 2 611 1 995 1 439 987 648 443 274 212 207 68 359 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM344: Makhado 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male LIM352: Aganang 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 32 690 28 718 29 904 31 664 24 445 17 210 13 346 11 344 9 980 8 907 7 129 6 102 4 621 3 317 3 232 1 735 1 338 1 115 236 795 8 400 7 980 8 328 8 995 5 154 2 913 2 107 1 918 1 884 1 859 1 829 1 739 1 891 1 345 1 265 724 435 406 59 171 86 Female 32 109 28 179 27 772 30 033 24 377 20 658 17 925 16 749 14 532 13 342 11 639 9 226 6 814 6 355 5 300 5 650 4 556 4 020 279 236 Female 8 558 7 865 7 875 8 318 5 527 4 185 3 079 3 060 2 901 3 313 2 843 2 782 2 763 2 315 2 282 1 592 1 361 1 372 71 992 Total 64 799 56 896 57 676 61 697 48 822 37 868 31 270 28 093 24 511 22 249 18 768 15 327 11 435 9 672 8 531 7 385 5 895 5 135 516 031 Total 16 958 15 845 16 203 17 314 10 681 7 098 5 186 4 977 4 785 5 172 4 673 4 522 4 654 3 660 3 547 2 315 1 796 1 778 131 164 LIM351: Blouberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM353: Molemole 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 11 251 10 331 10 922 10 960 7 360 4 019 3 025 2 618 2 427 2 035 1 861 1 727 1 713 1 233 1 134 699 425 413 74 152 Male 7 003 6 102 6 389 7 089 5 044 3 400 2 467 2 182 1 901 1 731 1 391 1 378 1 213 964 691 423 287 226 49 881 Total 10 578 10 328 10 024 10 765 7 758 5 597 4 532 4 347 3 889 4 250 3 102 2 639 2 735 2 136 2 106 1 457 1 184 1 049 88 476 21 829 20 659 20 946 21 724 15 118 9 616 7 557 6 965 6 317 6 285 4 963 4 366 4 447 3 370 3 240 2 156 1 610 1 462 162 629 Female Total 7 130 5 979 5 932 6 627 4 907 4 173 3 170 3 140 2 825 2 895 2 250 1 996 1 819 1 393 1 457 1 000 934 811 58 440 14 133 12 081 12 321 13 716 9 951 7 573 5 637 5 322 4 726 4 625 3 641 3 374 3 032 2 357 2 148 1 423 1 222 1 038 108 321 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM354: Polokwane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM361: Thabazimbi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 87 Male Female 35 722 29 723 29 927 33 633 36 309 30 166 22 964 18 280 15 558 13 294 10 462 8 965 6 349 4 208 3 210 1 666 975 823 302 233 Male 4 018 2 695 2 327 2 543 5 424 7 338 6 318 5 003 3 641 3 674 3 045 1 945 830 448 297 142 101 87 49 877 35 596 29 667 28 775 33 736 34 886 30 776 23 776 21 652 18 723 16 839 12 794 10 323 8 232 6 313 5 332 3 783 2 817 2 746 326 766 Female 4 071 2 610 2 293 2 481 3 807 4 467 3 578 2 977 2 578 2 203 1 627 1 043 631 398 239 160 114 80 35 357 Total 71 317 59 390 58 703 67 369 71 195 60 942 46 741 39 932 34 280 30 133 23 257 19 287 14 581 10 522 8 542 5 449 3 793 3 569 628 999 Total 8 089 5 305 4 620 5 024 9 230 11 805 9 897 7 979 6 220 5 877 4 672 2 989 1 461 846 536 302 216 167 85 234 LIM355: LepeleNkumpi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM362: Lephalale 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 15 323 13 646 12 804 14 272 10 124 7 031 5 090 4 366 4 083 3 738 3 199 2 930 2 442 1 798 1 761 923 684 589 104 805 15 316 13 402 12 425 13 552 10 286 8 534 6 883 6 797 6 279 6 077 5 439 4 532 3 832 3 402 2 818 2 167 1 971 1 833 125 545 30 639 27 049 25 229 27 823 20 409 15 565 11 974 11 163 10 363 9 815 8 638 7 462 6 274 5 200 4 579 3 089 2 655 2 423 230 350 Male Female Total 6 043 4 740 4 574 5 157 8 604 8 956 6 399 4 556 3 350 2 991 2 532 1 836 1 240 604 548 303 196 192 62 819 5 849 4 724 4 411 4 903 6 385 5 721 4 135 3 526 2 806 2 688 2 032 1 636 1 238 869 745 585 380 315 52 948 11 891 9 464 8 985 10 059 14 990 14 677 10 533 8 082 6 157 5 678 4 564 3 472 2 479 1 472 1 293 888 576 507 115 767 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 88 LIM364: Mookgopong 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male LIM366: BelaBela 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 1 989 1 257 1 286 1 371 2 255 2 289 1 658 1 324 1 052 878 767 578 541 404 303 194 127 55 18 329 3 501 3 000 2 843 2 957 3 696 3 610 2 927 2 323 2 025 1 655 1 424 1 101 968 703 434 302 177 108 33 754 Female 1 975 1 358 1 288 1 244 1 743 1 804 1 354 1 299 1 138 996 661 601 541 421 360 254 149 125 17 310 Female 3 455 3 058 2 808 2 777 3 126 3 097 2 379 2 290 1 955 1 838 1 507 1 255 970 735 612 423 264 199 32 746 Total 3 964 2 615 2 574 2 615 3 998 4 093 3 013 2 623 2 190 1 874 1 427 1 179 1 083 824 663 449 276 180 35 640 Total 6 956 6 059 5 651 5 734 6 821 6 707 5 305 4 613 3 980 3 493 2 931 2 356 1 938 1 439 1 045 725 440 307 66 500 LIM365: Modimolle 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM367: Mogalakwena 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 4 076 3 466 3 164 3 263 3 671 3 651 2 899 2 443 1 867 1 591 1 245 1 012 707 585 495 277 161 116 34 686 Male 4 055 3 310 3 054 2 938 3 358 3 134 2 559 2 379 1 949 1 753 1 331 1 112 820 700 585 364 245 182 33 827 Female 19 520 17 004 16 762 18 674 14 354 10 892 8 456 7 106 5 824 5 501 4 645 3 960 3 425 2 486 2 417 1 196 813 668 143 702 19 669 16 747 15 942 17 566 14 724 12 344 9 534 9 353 7 774 7 887 6 577 5 836 4 932 4 159 4 169 2 769 2 187 1 811 163 980 Total 8 130 6 776 6 218 6 202 7 029 6 784 5 458 4 821 3 816 3 344 2 576 2 124 1 527 1 284 1 080 640 406 297 68 513 Total 39 189 33 751 32 704 36 240 29 078 23 236 17 990 16 459 13 598 13 388 11 222 9 796 8 356 6 645 6 587 3 964 2 999 2 480 307 682 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM471: Ephraim Mogale 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM473: Makhuduthamaga 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 89 Male 8 415 7 308 6 797 7 323 6 038 4 435 3 262 2 704 2 326 2 100 1 767 1 548 1 328 918 886 393 333 326 58 207 Female 8 147 6 938 6 310 6 804 5 983 5 178 3 942 3 684 3 160 3 028 2 538 2 147 1 877 1 767 1 324 954 905 756 65 442 Total 16 562 14 246 13 107 14 127 12 021 9 612 7 204 6 388 5 486 5 128 4 305 3 694 3 206 2 685 2 209 1 347 1 238 1 082 123 648 Male Female Total 19 346 17 035 16 586 16 848 11 169 7 110 5 213 4 522 4 048 3 541 3 191 3 126 2 811 2 056 2 134 1 082 802 663 121 282 18 897 17 001 15 602 16 459 12 435 10 610 8 819 8 002 7 116 6 866 5 781 5 326 4 971 4 895 3 541 2 533 2 165 2 057 153 075 38 243 34 036 32 187 33 306 23 604 17 720 14 032 12 523 11 164 10 407 8 972 8 452 7 782 6 950 5 675 3 615 2 966 2 721 274 358 LIM472: Elias Motsoaledi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total LIM474: Fetakgomo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 16 696 14 483 14 211 14 840 12 198 8 288 6 127 5 258 4 350 4 064 3 501 3 064 2 605 2 108 1 742 820 554 595 115 503 Male 6 077 5 422 5 183 5 441 4 013 3 099 2 318 1 894 1 574 1 493 1 271 1 228 976 644 751 381 274 217 42 258 16 507 14 618 13 579 14 663 12 335 9 986 7 727 6 987 5 985 6 147 4 920 4 403 4 246 3 777 2 743 1 868 1 775 1 594 133 860 Female 6 150 5 447 4 931 5 442 4 342 3 907 3 033 2 763 2 450 2 523 1 972 1 737 1 496 1 650 1 261 925 734 774 51 536 Total 33 204 29 101 27 790 29 503 24 533 18 275 13 854 12 244 10 335 10 210 8 422 7 467 6 851 5 885 4 485 2 687 2 329 2 188 249 363 Total 12 227 10 869 10 114 10 882 8 355 7 006 5 351 4 657 4 024 4 016 3 243 2 965 2 472 2 294 2 013 1 306 1 009 991 93 795 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa LIM475: Greater Tubatse 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP302: Msukaligwa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 90 Male 22 141 18 759 17 676 18 448 17 627 15 294 11 868 9 075 6 939 6 113 4 472 3 882 2 846 1 786 1 708 766 536 461 160 398 Male 8 301 7 590 7 030 7 532 8 089 7 969 5 829 4 794 4 125 3 427 3 001 2 417 1 656 969 649 365 223 148 74 113 Female Total 22 027 18 329 17 042 18 172 18 251 16 460 12 700 10 224 8 425 8 087 5 541 4 652 3 648 3 662 2 686 2 048 1 661 1 663 175 278 44 168 37 089 34 718 36 620 35 877 31 754 24 568 19 300 15 363 14 201 10 013 8 534 6 493 5 448 4 394 2 814 2 197 2 124 335 676 Female Total 8 273 7 271 6 944 7 542 7 908 7 520 5 359 4 741 4 191 3 921 3 238 2 673 1 970 1 192 1 082 638 438 363 75 264 16 575 14 861 13 974 15 073 15 997 15 489 11 188 9 535 8 316 7 348 6 239 5 090 3 625 2 160 1 731 1 004 661 511 149 377 MP301: Albert Luthuli 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP303: Mkhondo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 11 877 11 183 11 179 11 818 9 015 6 874 4 688 3 908 3 385 2 980 2 627 2 244 1 788 1 309 1 001 535 405 372 87 188 Male Female 11 537 11 153 10 873 11 745 9 704 7 828 5 455 4 908 4 813 4 471 3 934 3 499 2 657 1 787 1 697 1 132 836 795 98 822 Female 10 949 10 423 10 113 9 980 8 452 7 192 5 145 4 562 3 822 3 093 2 449 2 060 1 512 905 741 362 273 232 82 263 10 737 10 657 10 043 9 946 9 006 7 371 5 406 5 079 4 350 4 180 3 343 2 768 2 064 1 552 1 368 743 666 439 89 719 Total 23 414 22 336 22 052 23 563 18 719 14 702 10 143 8 816 8 198 7 452 6 561 5 743 4 444 3 096 2 698 1 667 1 240 1 166 186 010 Total 21 686 21 081 20 156 19 926 17 458 14 564 10 551 9 641 8 172 7 273 5 792 4 828 3 576 2 457 2 109 1 104 939 671 171 982 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 91 MP304: Pixley Ka Seme 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male MP306: Dipaleseng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 5 126 4 679 4 756 4 548 3 889 3 158 2 433 2 130 1 718 1 615 1 469 1 198 991 658 528 306 178 140 39 520 2 319 1 902 1 796 1 991 2 204 2 302 1 871 1 538 1 255 1 048 904 738 608 390 303 133 95 65 21 462 Female 5 077 4 804 4 608 4 627 4 066 3 332 2 617 2 331 2 298 2 196 1 842 1 700 1 294 980 779 497 359 310 43 715 Female 2 272 1 827 1 836 1 972 2 013 1 912 1 550 1 379 1 138 1 130 918 834 655 535 414 266 154 121 20 928 Total 10 203 9 483 9 364 9 175 7 955 6 490 5 049 4 461 4 016 3 811 3 311 2 898 2 285 1 638 1 307 803 537 450 83 235 Total 4 592 3 729 3 632 3 963 4 217 4 214 3 420 2 917 2 393 2 179 1 822 1 571 1 264 925 717 399 249 186 42 390 MP305: Lekwa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male MP307: Govan Mbeki 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 6 030 5 279 5 332 5 556 6 285 5 606 4 477 3 917 3 360 2 968 2 674 2 322 1 504 990 627 335 229 157 57 647 5 990 5 277 5 176 5 528 5 387 5 311 4 196 3 907 3 443 3 443 2 917 2 234 1 749 1 247 978 604 373 253 58 014 Female 15 129 12 843 11 778 12 898 17 261 18 512 14 306 11 027 9 202 8 330 7 741 5 608 3 272 1 962 1 020 703 328 291 152 211 15 176 12 761 11 517 12 842 14 449 14 829 11 136 9 795 8 910 8 689 7 338 5 021 3 308 2 321 1 834 1 123 717 560 142 326 Total 12 021 10 556 10 508 11 084 11 671 10 917 8 673 7 825 6 804 6 411 5 591 4 556 3 253 2 237 1 606 939 602 409 115 662 Total 30 305 25 604 23 295 25 740 31 710 33 341 25 441 20 822 18 112 17 019 15 079 10 629 6 580 4 283 2 854 1 826 1 045 851 294 538 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa MP311: Victor Khanye 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP313: Steve Tshwete 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 92 Male Female 3 990 3 349 3 415 3 433 4 114 4 188 3 335 2 868 2 443 2 069 1 683 1 381 1 002 656 440 238 126 87 38 816 Male 11 127 9 048 8 663 9 484 13 025 14 273 11 152 9 578 8 197 6 863 6 131 4 654 3 046 1 791 1 131 647 355 244 119 411 4 063 3 322 3 146 3 347 3 516 3 538 2 772 2 558 2 040 2 144 1 686 1 343 1 144 704 536 361 221 193 36 636 Female 11 117 9 059 8 554 9 425 11 116 11 336 9 009 8 379 7 499 6 741 5 408 4 202 2 895 2 085 1 494 945 649 509 110 421 Total 8 053 6 672 6 561 6 780 7 629 7 726 6 107 5 426 4 483 4 213 3 369 2 724 2 146 1 361 976 598 347 279 75 452 Total 22 245 18 107 17 218 18 909 24 141 25 609 20 161 17 957 15 696 13 604 11 539 8 855 5 940 3 876 2 625 1 592 1 003 753 229 831 MP312: Emalahleni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP314: Emakhazeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 19 803 15 598 14 683 15 997 24 156 26 728 20 716 16 553 13 298 11 941 10 585 7 885 4 840 2 555 1 699 864 464 387 208 751 Male 19 821 15 257 14 390 16 218 20 249 20 191 15 483 13 678 11 943 11 084 8 810 6 784 4 629 2 973 2 276 1 302 886 741 186 715 Female 2 482 2 146 2 185 2 223 2 507 2 649 2 029 1 693 1 446 1 172 931 780 679 491 330 156 125 75 24 099 2 376 2 066 1 946 2 164 2 293 2 167 1 734 1 522 1 422 1 242 1 044 899 676 550 401 248 180 188 23 117 Total 39 625 30 855 29 073 32 214 44 405 46 920 36 199 30 231 25 240 23 026 19 395 14 668 9 469 5 527 3 975 2 166 1 349 1 128 395 466 Total 4 859 4 212 4 130 4 387 4 799 4 817 3 762 3 215 2 867 2 413 1 975 1 679 1 355 1 042 731 403 305 264 47 216 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa MP315: Thembisile 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP321: Thaba Chweu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 93 Male Female Total 18 094 16 536 15 535 16 753 15 794 13 157 10 195 8 743 7 475 6 609 5 362 4 687 3 570 2 133 1 348 669 520 497 147 676 18 134 16 323 15 111 17 030 15 547 13 924 11 151 10 175 8 665 8 378 7 227 6 158 4 808 3 204 2 652 1 698 1 316 1 279 162 783 36 227 32 859 30 646 33 783 31 341 27 081 21 346 18 919 16 140 14 986 12 590 10 845 8 379 5 337 4 000 2 368 1 836 1 776 310 458 Male Female Total 4 804 3 805 3 863 4 131 5 362 5 889 4 727 4 226 3 503 2 958 2 217 1 768 1 181 793 557 311 190 129 50 415 4 795 3 781 3 714 4 136 4 718 4 939 3 993 3 680 3 181 2 867 2 158 1 844 1 301 942 778 486 366 293 47 972 9 600 7 586 7 577 8 267 10 080 10 829 8 720 7 907 6 684 5 825 4 375 3 612 2 483 1 736 1 336 796 555 422 98 387 MP316: Dr JS Moroka 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP322: Mbombela 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 14 765 13 255 13 124 14 195 12 019 8 991 6 820 5 857 5 169 4 899 4 270 3 999 3 426 2 483 1 882 965 749 629 117 494 14 732 13 191 12 382 13 829 11 780 10 261 7 779 7 160 6 578 6 256 5 382 5 057 4 731 4 042 3 315 2 188 1 800 1 747 132 211 29 497 26 446 25 505 28 024 23 799 19 252 14 599 13 016 11 747 11 154 9 652 9 056 8 157 6 525 5 197 3 153 2 549 2 376 249 705 Male Female Total 33 577 26 920 28 174 29 563 32 704 31 279 23 103 19 459 15 057 13 028 9 779 7 784 5 595 3 582 2 736 1 419 1 055 937 285 750 32 699 27 000 27 282 30 838 33 338 31 638 23 479 21 297 17 622 15 475 11 037 9 650 6 594 4 399 4 139 2 646 2 102 1 808 303 044 66 275 53 919 55 456 60 401 66 043 62 917 46 582 40 757 32 679 28 503 20 816 17 435 12 189 7 982 6 875 4 065 3 157 2 745 588 794 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 94 MP323: Umjindi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 512 2 892 2 896 3 074 3 880 4 295 3 310 2 716 2 190 1 864 1 434 1 109 721 470 397 199 98 82 35 141 Female 3 443 2 890 2 787 3 127 3 260 3 365 2 490 2 360 1 969 1 602 1 328 1 035 800 545 415 295 186 118 32 016 Total 6 955 5 782 5 683 6 201 7 140 7 661 5 800 5 076 4 159 3 466 2 761 2 144 1 521 1 015 812 495 285 200 67 156 MP324: Nkomazi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total MP325: Bushbuckridge 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 35 470 32 634 33 228 33 911 27 017 18 457 13 363 10 710 8 998 7 528 5 675 5 186 4 513 3 068 2 801 1 371 1 143 949 246 023 34 892 32 283 31 845 33 904 29 316 24 801 19 278 16 788 14 553 12 976 9 700 8 956 6 594 5 424 4 823 3 628 3 273 2 192 295 224 70 362 64 917 65 074 67 815 56 333 43 258 32 641 27 498 23 552 20 504 15 375 14 142 11 107 8 492 7 623 4 999 4 417 3 140 541 248 NW371: Moretele 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 24 460 21 690 23 267 24 406 21 460 17 594 12 510 9 784 7 364 6 452 4 606 3 864 2 856 1 846 1 716 886 718 594 186 074 Male 24 607 22 077 23 178 24 564 22 642 19 718 14 667 12 105 10 216 8 200 5 832 5 022 3 813 2 681 2 874 1 953 1 756 1 049 206 956 Female 11 047 9 375 8 664 9 636 9 333 8 150 6 541 5 181 4 159 3 758 3 464 3 337 2 870 2 125 1 528 936 596 491 91 193 11 192 9 383 8 175 9 039 8 673 8 083 6 195 5 394 4 625 4 057 4 058 3 926 3 357 2 945 2 377 1 784 1 285 1 208 95 755 Total 49 067 43 767 46 445 48 971 44 102 37 312 27 177 21 889 17 580 14 652 10 438 8 887 6 669 4 528 4 591 2 839 2 474 1 643 393 030 Total 22 239 18 757 16 839 18 675 18 006 16 232 12 736 10 575 8 784 7 815 7 522 7 263 6 227 5 070 3 905 2 720 1 881 1 699 186 947 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NW372: Madibeng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW374: Kgetlengrivier 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 95 Male Female 26 819 18 792 16 698 19 132 28 599 30 403 25 529 20 136 15 780 14 224 12 029 9 462 6 221 4 312 2 717 1 518 916 705 253 991 26 121 18 682 15 577 17 985 23 656 23 421 18 324 16 072 13 057 11 829 9 895 8 479 6 271 4 888 3 569 2 567 1 601 1 394 223 390 Male Female 2 933 2 417 2 196 2 277 2 553 2 590 2 149 1 982 1 713 1 494 1 341 1 043 916 575 345 225 170 114 27 034 2 599 2 262 2 164 2 246 2 105 1 989 1 762 1 681 1 490 1 298 1 084 970 788 519 415 288 206 148 24 015 Total 52 940 37 474 32 275 37 117 52 255 53 825 43 852 36 209 28 837 26 053 21 923 17 941 12 492 9 200 6 286 4 085 2 517 2 100 477 381 Total 5 533 4 678 4 360 4 523 4 658 4 579 3 911 3 663 3 203 2 793 2 425 2 013 1 704 1 095 760 514 377 262 51 049 NW373: Rustenburg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW375: Moses Kotane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 28 861 20 335 17 891 20 234 31 696 37 664 34 163 27 039 22 340 21 401 16 465 10 672 5 517 3 141 1 941 1 252 680 503 301 796 Male 28 098 19 911 17 364 19 543 27 107 29 081 23 293 19 246 16 582 13 598 10 488 7 274 5 202 3 746 2 814 1 944 1 285 1 204 247 779 Female 14278 11230 10187 11374 12027 11617 9341 7490 6166 5844 5614 4601 3415 2826 1942 1241 756 565 120515 14127 11273 9700 10682 11133 9996 7941 7263 6779 6482 5958 5010 4239 3577 2926 2126 1420 1406 122038 Total 56 959 40 247 35 256 39 777 58 803 66 745 57 455 46 284 38 923 34 999 26 953 17 946 10 718 6 887 4 755 3 196 1 965 1 707 549 575 Total 28405 22503 19887 22056 23160 21613 17282 14753 12945 12326 11572 9611 7655 6403 4868 3367 2176 1972 242554 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NW381: Ratlou 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW383: Mafikeng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 96 Male 7549 6766 6769 6156 4172 3157 2562 2260 2018 1869 1909 1574 1415 1178 835 532 307 281 51310 Male 16 690 14 329 14 442 15 764 15 061 12 657 10 063 8 638 8 110 6 977 5 884 4 330 3 137 2 205 1 512 905 495 443 141 642 Female 7389 6662 6439 5689 4490 3670 2930 2826 2546 2525 2289 2026 1743 1554 1146 861 623 621 56029 Female 16 502 13 857 13 883 15 717 14 821 12 638 10 356 10 287 9 390 8 172 6 716 5 280 3 745 2 942 2 214 1 453 958 954 149 885 Total 14938 13428 13208 11845 8663 6827 5492 5086 4565 4395 4198 3600 3157 2732 1981 1393 929 903 107339 Total 33 192 28 186 28 325 31 482 29 882 25 295 20 419 18 925 17 500 15 149 12 600 9 610 6 882 5 147 3 726 2 358 1 453 1 397 291 527 NW382: Tswaing 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW384: Ditsobotla 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 8 116 7 405 7 644 6 687 5 434 4 448 3 613 3 254 2 933 2 810 2 765 2 130 1 633 1 187 827 478 302 262 61 931 7 634 7 065 6 892 6 158 5 470 4 715 3 619 3 516 3 144 3 062 2 713 2 301 1 658 1 427 1 122 822 502 465 62 287 Male Female 10 717 9 087 8 523 7 739 7 864 7 407 6 308 5 542 4 945 4 248 3 745 3 120 2 100 1 576 1 156 576 364 280 85 297 10 038 8 774 7 874 7 631 7 332 6 934 5 664 5 427 4 666 4 406 3 842 3 236 2 444 1 847 1 417 964 616 493 83 605 Total 15 751 14 470 14 536 12 845 10 904 9 163 7 233 6 770 6 078 5 872 5 479 4 430 3 292 2 614 1 950 1 300 804 727 124 218 Total 20 754 17 861 16 397 15 371 15 196 14 342 11 972 10 969 9 611 8 654 7 587 6 356 4 544 3 423 2 573 1 540 981 772 168 902 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NW385: Ramotshere Moiloa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW393: Mamusa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 97 Male 9 482 8 100 7 859 7 333 6 888 5 319 4 793 4 258 3 609 3 171 3 067 2 715 2 179 1 691 1 193 726 450 386 73 220 Male 4 132 3 847 3 309 3 046 2 686 2 417 1 888 1 717 1 366 1 310 1 166 1 032 755 500 372 172 122 104 29 941 Female 8 972 7 824 7 291 7 033 6 537 5 698 4 833 4 800 4 271 4 005 3 529 3 233 2 658 2 221 1 629 1 142 892 925 77 494 Female 3 927 3 755 3 072 2 748 2 825 2 654 2 002 1 732 1 438 1 446 1 220 1 107 732 564 429 308 240 215 30 414 Total 18 454 15 924 15 150 14 366 13 425 11 017 9 626 9 058 7 881 7 176 6 596 5 948 4 837 3 912 2 822 1 868 1 342 1 311 150 713 Total 8 059 7 602 6 381 5 794 5 511 5 071 3 890 3 449 2 804 2 756 2 386 2 140 1 487 1 064 801 480 362 319 60 355 NW392: Naledi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 4 060 3 474 3 094 3 053 2 889 3 010 2 520 2 494 2 002 1 799 1 690 1 241 829 520 357 258 126 86 33 502 Female 3 844 3 253 2 958 2 999 2 911 2 945 2 378 2 258 1 973 1 859 1 681 1 314 895 733 465 375 228 210 33 279 Total 7 904 6 727 6 052 6 052 5 800 5 955 4 899 4 751 3 975 3 658 3 372 2 555 1 724 1 253 822 632 354 296 66 781 NW394: Greater Taung 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 11476 10755 10105 10254 7288 5181 4293 3720 3414 3301 3232 2765 2518 2077 1452 961 534 429 83756 11291 10662 9365 9644 7676 6490 5477 5176 4521 4338 3915 3599 3196 2808 2165 1608 978 978 93886 22767 21416 19470 19898 14964 11671 9770 8896 7935 7638 7147 6364 5714 4886 3617 2569 1512 1407 177642 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NW396: LekwaTeemane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW401: Ventersdorp 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 98 Male 3 064 2 889 2 496 2 498 2 607 2 272 2 060 1 688 1 464 1 348 1 120 992 731 558 357 235 123 100 26 600 Male 3 872 3 298 2 997 2 763 2 564 2 355 1 883 1 911 1 523 1 372 1 094 1 084 809 653 476 288 174 130 29 246 Female 3 152 2 848 2 506 2 445 2 335 2 109 1 881 1 652 1 446 1 423 1 102 1 051 830 650 506 326 185 203 26 648 Female 3 310 3 035 2 557 2 318 2 468 2 332 1 988 1 832 1 458 1 395 1 093 1 070 837 578 472 314 196 201 27 456 Total 6 215 5 736 5 002 4 942 4 942 4 381 3 941 3 340 2 909 2 771 2 222 2 043 1 561 1 208 862 561 308 303 53 248 Total 7 183 6 333 5 554 5 081 5 032 4 687 3 871 3 743 2 981 2 768 2 187 2 154 1 645 1 231 948 602 370 331 56 702 NW397: Kagisano/Molopo 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NW402: Tlokwe City Council 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 7 772 6 658 5 807 5 779 3 803 3 410 2 775 2 598 2 338 2 215 2 049 1 706 1 392 1 081 699 383 244 207 50 918 Male 7 691 6 650 6 408 6 930 9 788 7 836 6 348 5 816 5 280 4 352 3 877 2 933 2 222 1 567 1 071 625 349 225 79 967 Female 7 477 6 505 5 579 5 390 4 229 3 795 3 361 3 266 2 874 2 869 2 405 2 043 1 445 1 224 806 636 462 505 54 870 Female 7 656 6 438 6 150 7 217 9 844 7 347 6 240 5 869 5 281 4 979 4 177 3 491 2 670 1 994 1 484 965 524 465 82 794 Total 15 249 13 163 11 387 11 169 8 033 7 205 6 136 5 864 5 212 5 083 4 454 3 749 2 837 2 305 1 505 1 019 706 712 105 789 Total 15 347 13 089 12 558 14 148 19 633 15 184 12 588 11 686 10 560 9 331 8 054 6 424 4 891 3 561 2 555 1 590 873 690 162 762 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NW403: City of Matlosana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC061: Richtersveld 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 99 Male Female Total 21 625 18 343 17 497 17 617 18 532 18 570 15 793 14 349 13 049 11 990 10 332 7 537 5 217 3 591 2 513 1 476 819 515 199 364 21 092 17 662 16 393 16 843 18 640 18 310 15 381 13 535 12 934 11 952 10 150 8 007 5 890 4 540 3 380 2 297 1 330 976 199 311 42 717 36 004 33 890 34 460 37 172 36 880 31 174 27 883 25 983 23 941 20 482 15 544 11 107 8 131 5 893 3 773 2 150 1 491 398 676 Male Female Total 481 482 525 487 475 674 524 506 526 447 365 286 191 140 84 54 30 23 6 300 456 440 472 394 434 533 444 435 439 454 328 251 215 166 87 73 34 27 5 682 937 922 997 881 910 1 207 968 941 965 902 692 537 406 306 172 128 64 50 11 982 NW404: Maquassi Hills 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC062: Nama Khoi 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 4 949 4 407 3 611 3 503 3 724 3 422 2 734 2 446 2 088 1 917 1 707 1 448 955 761 460 272 157 119 38 680 Male Female 4 794 4 297 3 576 3 429 3 629 3 567 2 702 2 389 2 151 2 023 1 700 1 438 1 106 809 622 378 266 237 39 114 Female 1 968 1 966 2 137 2 319 1 839 1 715 1 641 1 613 1 568 1 456 1 291 1 137 890 671 500 257 137 110 23 215 1 789 1 830 2 009 2 128 1 773 1 735 1 677 1 622 1 778 1 592 1 425 1 276 1 002 799 576 393 241 183 23 826 Total 9 743 8 704 7 187 6 932 7 353 6 990 5 437 4 834 4 239 3 940 3 407 2 886 2 061 1 570 1 083 650 423 356 77 794 Total 3 757 3 795 4 146 4 447 3 613 3 450 3 318 3 234 3 346 3 047 2 716 2 413 1 892 1 471 1 076 650 378 293 47 041 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NC064: Kamiesberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC066: Karoo Hoogland 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 100 Male 458 455 502 528 348 306 292 309 337 362 298 254 232 166 125 86 46 31 5 136 Male 558 644 609 515 384 390 371 441 456 449 360 302 237 226 143 62 45 62 6 253 Female 407 398 481 405 328 331 293 321 327 376 309 261 233 220 144 98 63 56 5 051 Female 584 537 551 502 415 370 351 478 449 430 331 339 272 255 175 113 76 106 6 335 Total 865 853 982 933 677 637 585 630 664 738 607 515 465 386 269 184 109 87 10 187 Total 1 141 1 181 1 160 1 017 799 760 722 918 905 879 691 642 509 481 318 175 121 169 12 588 NC065: Hantam 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 1 035 1 023 1 040 997 837 793 632 696 729 721 620 525 411 292 215 120 71 53 10 809 Female 907 938 981 901 790 755 597 702 753 753 664 549 441 356 258 173 140 111 10 769 Total 1 942 1 961 2 021 1 898 1 627 1 548 1 228 1 398 1 481 1 474 1 284 1 075 852 648 472 293 211 163 21 578 NC067: Khâi-Ma 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 567 583 544 521 691 657 602 515 470 378 323 263 163 110 77 56 18 21 6 560 Female 537 494 496 492 595 557 474 402 413 352 307 224 156 155 98 63 45 44 5 905 Total 1 104 1 078 1 041 1 013 1 285 1 214 1 075 917 883 729 630 487 319 265 176 120 63 65 12 465 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NC071: Ubuntu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC073: Emthanjeni 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 101 Male 1 066 1 057 974 831 820 733 609 619 559 494 427 333 265 197 110 78 24 29 9 225 Female 1 087 1 101 907 822 774 660 591 616 571 527 424 406 295 213 152 105 60 66 9 376 Male Female 2 356 2 298 2 144 2 046 1 763 1 688 1 492 1 324 1 169 1 070 984 787 613 446 273 150 66 51 20 722 2 247 2 274 2 103 1 988 1 760 1 688 1 412 1 242 1 326 1 248 1 086 979 798 566 404 258 132 122 21 634 Total 2 153 2 158 1 881 1 652 1 594 1 394 1 200 1 235 1 130 1 021 851 739 560 410 263 183 84 95 18 601 Total 4 603 4 573 4 248 4 034 3 523 3 376 2 904 2 565 2 495 2 317 2 070 1 766 1 411 1 012 678 409 198 174 42 356 NC072: Umsobomvu 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC074: Kareeberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 1 451 1 474 1 482 1 395 1 179 1 280 1 065 839 766 699 540 483 397 279 155 113 50 43 13 689 Male 599 538 580 458 478 435 295 381 391 357 313 289 241 166 106 67 37 23 5 755 1 573 1 542 1 392 1 294 1 225 1 228 1 060 807 833 838 735 654 499 338 293 142 105 127 14 687 Female 625 574 514 522 454 386 304 380 372 370 330 290 250 182 118 103 62 80 5 918 Total 3 025 3 016 2 874 2 689 2 404 2 508 2 124 1 646 1 599 1 537 1 275 1 137 896 618 447 255 155 170 28 376 Total 1 224 1 112 1 094 980 931 822 599 761 763 727 643 580 491 348 224 170 100 103 11 673 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NC075: Renosterberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC077: Siyathemba 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 102 Male 575 656 555 483 469 370 372 309 317 285 270 223 185 122 97 44 22 18 5 371 Male 1 121 1 129 1 124 991 858 915 792 677 697 632 535 453 335 206 136 88 37 32 10 759 Female 589 640 587 406 443 420 390 366 320 324 252 269 222 146 119 54 31 29 5 607 Female 1 095 1 074 1 100 940 869 781 692 631 698 625 640 503 386 289 216 149 69 73 10 832 Total 1 164 1 296 1 142 888 912 790 762 675 638 609 522 492 406 267 215 98 53 47 10 978 Total 2 216 2 203 2 224 1 931 1 727 1 696 1 484 1 308 1 395 1 257 1 175 956 722 495 352 237 105 106 21 591 NC076: Thembelihle 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC078: Siyancuma 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 874 848 825 723 711 629 556 504 475 444 397 304 250 149 126 79 38 43 7 976 Male Female 783 721 793 717 671 624 495 471 512 418 425 292 236 178 147 115 54 72 7 724 Female 2 165 1 946 1 933 1 793 1 541 1 623 1 277 1 209 1 143 949 779 721 513 404 242 156 92 84 18 570 1 990 1 931 1 836 1 750 1 501 1 522 1 272 1 168 1 101 1 062 882 722 532 392 306 250 146 141 18 505 Total 1 657 1 568 1 618 1 440 1 382 1 253 1 052 975 987 863 822 596 486 327 273 194 92 115 15 701 Total 4 156 3 877 3 770 3 543 3 041 3 144 2 549 2 377 2 244 2 010 1 661 1 444 1 045 797 548 406 238 225 37 076 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NC081: Mier 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC083: //Khara Hais 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 103 Male 411 391 343 341 291 273 223 250 231 195 169 119 129 77 68 36 22 30 3 599 Male 4 771 4 606 4 785 4 667 4 220 4 077 3 586 3 151 3 010 2 450 2 051 1 470 1 106 752 606 380 191 168 46 047 Female 346 392 331 337 283 202 214 208 220 169 141 178 115 83 62 52 30 39 3 404 Female 4 601 4 542 4 583 4 574 4 053 3 787 3 423 3 150 3 157 2 853 2 305 1 845 1 486 1 060 845 603 295 284 47 447 Total 758 783 674 679 574 475 437 458 451 364 310 296 245 160 129 89 52 69 7 003 Total 9 371 9 148 9 368 9 242 8 274 7 864 7 009 6 301 6 168 5 303 4 356 3 315 2 592 1 811 1 451 983 486 452 93 494 NC082: Kai !Garib 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total NC084: !Kheis 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 2 845 2 699 2 716 3 274 4 636 3 973 3 073 2 470 2 067 1 690 1 491 1 139 765 558 393 255 117 118 34 278 2 695 2 596 2 523 2 991 3 803 3 217 2 502 2 157 1 870 1 771 1 484 1 105 945 637 521 352 204 219 31 591 5 540 5 294 5 238 6 265 8 439 7 191 5 575 4 627 3 937 3 460 2 975 2 244 1 710 1 195 914 607 321 337 65 869 Male 1 010 968 971 746 627 597 694 577 479 494 335 321 243 142 101 64 12 28 8 408 Female 960 991 923 781 553 593 579 547 484 409 377 342 253 163 113 87 35 38 8 229 Total 1 970 1 959 1 894 1 527 1 179 1 190 1 274 1 124 962 903 712 663 496 305 214 151 47 66 16 637 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 104 NC085: Tsantsabane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male NC091: Sol Plaatjie 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 1 844 1 500 1 616 1 559 2 064 2 135 1 813 1 346 1 083 925 786 602 473 254 187 98 49 31 18 363 13 170 11 618 11 039 11 557 11 696 11 671 9 942 8 280 7 228 6 191 5 427 4 083 3 143 2 014 1 418 905 486 344 120 212 Female 1 845 1 542 1 460 1 459 1 696 1 600 1 310 1 206 992 851 790 563 488 344 241 167 80 98 16 730 Female 12 607 11 064 10 700 11 537 11 878 11 859 10 091 8 839 8 114 7 184 6 407 5 197 3 964 2 831 2 239 1 562 961 794 127 829 Total 3 690 3 042 3 075 3 018 3 759 3 735 3 123 2 552 2 074 1 776 1 576 1 164 961 598 427 265 129 129 35 093 Total 25 777 22 682 21 739 23 095 23 573 23 530 20 033 17 119 15 341 13 375 11 834 9 280 7 107 4 845 3 657 2 467 1 447 1 138 248 041 NC086: Kgatelopele 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male NC092: Dikgatlong 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 931 941 875 917 843 927 814 643 587 568 523 358 223 136 89 59 14 26 9 472 1 046 901 815 790 865 882 705 589 602 581 425 330 242 171 122 60 44 46 9 215 Female 2 651 2 460 2 373 2 137 2 173 1 993 1 800 1 479 1 367 1 097 1 079 788 657 437 252 164 82 73 23 062 2 583 2 500 2 258 2 162 2 161 2 071 1 742 1 546 1 337 1 328 1 069 896 672 543 356 278 138 137 23 778 Total 1 977 1 842 1 690 1 707 1 708 1 809 1 519 1 232 1 189 1 149 948 688 465 308 211 119 57 72 18 687 Total 5 234 4 959 4 632 4 299 4 334 4 064 3 543 3 025 2 704 2 425 2 148 1 684 1 328 980 608 442 221 210 46 841 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 105 NC093: Magareng 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male NC451: Joe Morolong 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 1 338 1 312 1 249 1 155 1 211 932 793 668 586 551 545 480 300 252 181 90 49 38 11 732 6 500 6 110 5 446 4 794 3 112 2 292 1 939 1 701 1 579 1 474 1 565 1 489 1 102 815 555 369 245 174 41 262 Female 1 352 1 183 1 167 1 153 1 112 982 913 769 688 711 573 523 412 322 263 170 94 84 12 473 Female 6 093 6 032 5 112 4 629 3 917 3 311 2 890 2 519 2 249 2 341 2 189 1 935 1 480 1 135 890 690 429 426 48 268 Total 2 690 2 495 2 417 2 307 2 323 1 914 1 706 1 438 1 274 1 262 1 118 1 003 713 574 444 260 143 122 24 204 Total 12 593 12 143 10 558 9 423 7 029 5 603 4 830 4 220 3 828 3 815 3 754 3 424 2 582 1 950 1 445 1 059 674 600 89 530 NC094: Phokwane 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male NC452: GaSegonyana 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 3 707 3 419 3 179 3 101 2 747 2 482 2 173 1 846 1 608 1 512 1 289 1 088 898 557 419 244 130 93 30 491 3 571 3 340 3 161 3 033 2 870 2 712 2 267 2 094 1 795 1 683 1 569 1 267 987 766 544 383 250 216 32 509 Female 5 765 4 941 4 745 4 721 4 326 3 997 3 551 2 933 2 436 2 046 1 748 1 383 969 624 363 236 144 67 44994 5 400 4 953 4 637 4 761 4 368 4 391 3 908 3 350 2 720 2 504 2 134 1 735 1 248 852 658 484 316 242 48658 Total 7 278 6 760 6 340 6 134 5 617 5 194 4 440 3 940 3 403 3 194 2 858 2 356 1 885 1 322 963 627 380 310 63 000 Total 11 164 9 894 9 382 9 482 8 693 8 388 7 458 6 282 5 156 4 551 3 882 3 117 2 216 1 476 1 021 720 460 308 93651 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa NC453: Gamagara 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC012: Cederberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 106 Male 2 032 1 736 1 700 1 541 2 642 3 333 2 623 1 892 1 405 1 106 996 773 467 209 113 65 40 37 22 710 Male 2 390 2 079 2 063 2 057 2 319 2 362 1 956 1 760 1 753 1 601 1 425 1 011 733 623 412 239 127 82 24 994 Female 1 902 1 677 1 545 1 610 2 060 2 283 1 858 1 432 1 037 1 023 871 591 395 225 160 118 60 60 18 907 Female 2 159 2 026 2 010 1 985 2 266 2 191 1 839 1 820 1 942 1 617 1 406 1 044 771 565 466 307 195 167 24 774 Total 3 934 3 412 3 245 3 151 4 703 5 616 4 481 3 324 2 442 2 129 1 866 1 364 862 434 274 183 100 97 41 617 Total 4 549 4 105 4 073 4 042 4 585 4 553 3 795 3 580 3 695 3 217 2 831 2 055 1 504 1 188 878 546 322 248 49 768 WC011: Matzikama 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC013: Bergrivier 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 3 296 2 917 2 860 2 974 3 180 2 816 2 485 2 309 2 351 2 260 1 888 1 461 1 026 732 489 296 174 110 33 624 3 238 2 942 2 748 3 045 3 028 2 751 2 348 2 244 2 311 2 128 1 852 1 438 1 052 843 563 469 281 242 33 523 6 535 5 859 5 608 6 019 6 208 5 567 4 833 4 553 4 662 4 388 3 740 2 899 2 078 1 575 1 052 765 455 352 67 147 Male Female Total 2 709 2 521 2 498 2 535 2 584 2 622 2 225 2 360 2 258 1 861 1 591 1 422 1 030 708 583 316 154 83 30 060 2 736 2 477 2 489 2 705 2 941 2 709 2 268 2 436 2 262 2 140 1 690 1 391 1 108 824 718 428 289 224 31 837 5 445 4 999 4 987 5 240 5 525 5 331 4 493 4 796 4 520 4 000 3 282 2 814 2 137 1 532 1 301 744 443 307 61 897 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa WC014: Saldanha Bay 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC022: Witzenberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 107 Male 4 978 3 876 3 784 3 874 5 177 5 172 4 113 3 767 3 614 2 887 2 471 1 889 1 457 1 030 663 366 179 92 49 389 Male 5 238 4 729 5 043 5 024 6 586 6 597 5 403 4 928 4 213 3 449 2 741 2 020 1 448 898 558 363 172 145 59 554 Female 4 800 3 880 3 772 3 847 5 118 5 085 3 878 3 720 3 460 3 110 2 681 2 057 1 528 1 126 770 483 287 202 49 804 Female 5 070 4 612 4 767 4 964 5 436 5 637 4 518 4 400 4 234 3 590 2 828 2 160 1 456 1 002 696 467 301 253 56 392 Total 9 778 7 755 7 556 7 721 10 294 10 257 7 991 7 487 7 074 5 997 5 152 3 946 2 985 2 157 1 433 850 466 294 99 193 Total 10 308 9 341 9 810 9 988 12 022 12 234 9 921 9 328 8 448 7 039 5 569 4 180 2 904 1 900 1 254 830 472 398 115 946 WC015: Swartland 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC023: Drakenstein 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 5 257 4 562 4 504 4 523 5 608 5 665 4 311 4 303 4 357 3 598 2 879 2 216 1 836 1 158 770 542 246 138 56 472 5 105 4 581 4 468 4 886 5 509 5 458 4 133 4 135 4 273 3 604 2 994 2 369 1 973 1 334 979 710 403 376 57 290 10 361 9 142 8 972 9 409 11 116 11 124 8 444 8 438 8 631 7 202 5 873 4 585 3 809 2 492 1 749 1 252 649 514 113 762 Male Female Total 12 038 10 092 10 275 11 683 12 984 11 820 8 912 9 041 8 942 7 855 6 438 4 740 3 407 2 144 1 478 888 465 321 123 525 11 745 10 049 10 093 11 607 12 397 11 252 8 802 9 058 9 595 8 652 7 223 5 403 4 027 2 722 2 090 1 386 895 742 127 737 23 783 20 141 20 368 23 290 25 381 23 072 17 714 18 099 18 536 16 508 13 660 10 143 7 434 4 867 3 568 2 275 1 360 1 063 251 262 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa 108 WC024: Stellenbosch 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male WC026: Langeberg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 6 765 5 592 5 503 7 370 11 359 7 967 6 023 5 123 4 933 4 185 3 417 2 655 2 052 1 339 874 515 316 188 76 176 4 894 4 489 4 627 4 309 4 241 4 138 3 445 3 271 3 463 2 941 2 271 1 808 1 376 1 045 689 434 249 199 47 891 Female 6 663 5 533 5 489 8 046 11 606 7 764 5 775 5 340 5 127 4 703 3 795 3 079 2 213 1 569 1 151 774 498 431 79 557 Female 4 893 4 412 4 444 4 335 4 262 4 066 3 357 3 534 3 758 3 201 2 631 2 024 1 595 1 159 881 641 345 295 49 834 Total 13 428 11 125 10 992 15 417 22 965 15 731 11 799 10 463 10 060 8 888 7 212 5 733 4 266 2 908 2 025 1 289 814 618 155 733 Total 9 787 8 901 9 071 8 644 8 503 8 205 6 802 6 804 7 222 6 142 4 902 3 832 2 971 2 203 1 570 1 076 594 494 97 724 WC025: Breede Valley 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC034: Swellendam 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 8 540 7 328 7 475 7 691 7 561 7 453 6 177 5 769 5 684 4 631 3 808 3 024 2 286 1 435 1 034 567 357 248 81 067 8 165 7 416 7 495 7 718 7 660 7 517 6 159 6 256 5 952 5 343 4 672 3 491 2 719 1 784 1 411 965 563 474 85 758 16 705 14 744 14 970 15 409 15 221 14 970 12 335 12 025 11 635 9 975 8 480 6 515 5 005 3 219 2 445 1 532 920 722 166 825 Male Female Total 1 660 1 497 1 567 1 569 1 582 1 465 1 302 1 243 1 215 1 219 980 817 630 437 316 206 120 66 17 891 1 671 1 442 1 555 1 477 1 477 1 486 1 172 1 330 1 239 1 257 1 017 763 664 513 396 259 177 129 18 025 3 331 2 939 3 122 3 046 3 059 2 951 2 474 2 573 2 454 2 476 1 997 1 580 1 295 950 711 465 297 195 35 916 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa WC031: Theewaterskloof 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC033: Cape Agulhas 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 109 Male Female Total 5 068 4 559 4 399 4 474 5 370 6 230 4 455 4 424 4 097 3 465 2 828 2 004 1 607 1 060 691 389 193 150 55 463 4 945 4 383 4 371 4 554 4 684 5 142 4 014 4 062 3 916 3 435 2 850 2 106 1 747 1 152 811 555 300 301 53 327 10 013 8 942 8 770 9 028 10 054 11 372 8 470 8 486 8 013 6 899 5 677 4 110 3 354 2 212 1 502 944 493 451 108 790 Male Female Total 1 356 1 195 1 342 1 247 1 354 1 411 1 158 1 131 1 226 1 087 999 762 642 518 378 237 129 56 16 229 1 335 1 211 1 301 1 406 1 351 1 396 1 009 1 111 1 271 1 178 1 025 799 780 579 472 272 188 124 16 808 2 691 2 406 2 644 2 654 2 705 2 808 2 167 2 242 2 496 2 264 2 024 1 561 1 422 1 097 850 509 317 180 33 038 WC032: Overstrand 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC041: Kannaland 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 366 2 721 2 557 2 455 3 321 4 201 3 672 3 017 2 647 2 051 1 709 1 541 1 844 1 729 1 365 895 430 267 39 786 Male 1 218 1 119 1 207 1 078 1 053 847 691 757 786 754 638 520 458 316 256 167 68 62 11 995 Female 3 402 2 688 2 541 2 681 3 209 3 992 3 258 2 734 2 550 2 065 1 907 1 882 2 067 1 947 1 585 945 644 548 40 646 Female 1 234 1 118 1 221 1 123 971 946 777 828 908 821 718 578 475 373 292 168 117 103 12 772 Total 6 768 5 409 5 097 5 136 6 530 8 193 6 930 5 751 5 197 4 116 3 615 3 423 3 911 3 676 2 950 1 839 1 074 815 80 432 Total 2 452 2 238 2 428 2 201 2 024 1 794 1 468 1 585 1 694 1 575 1 356 1 098 933 688 548 335 185 165 24 767 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa WC042: Hessequa 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC044: George 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 110 Male 2 195 2 081 2 224 1 950 1 794 1 974 1 568 1 642 1 851 1 725 1 445 1 295 1 189 991 743 480 237 142 25 525 Male 9 287 8 389 8 130 8 265 8 472 8 815 7 346 7 002 6 641 5 859 4 823 3 692 3 125 2 078 1 548 937 539 361 95 310 Female 2 155 2 065 2 105 2 020 1 896 2 112 1 539 1 722 2 060 1 849 1 630 1 430 1 296 1 164 836 583 368 287 27 117 Female 9 136 8 094 7 917 8 454 8 528 8 604 7 077 7 267 7 086 6 327 5 187 4 224 3 554 2 415 1 864 1 252 751 625 98 362 Total 4 351 4 146 4 329 3 970 3 689 4 086 3 107 3 364 3 911 3 574 3 075 2 725 2 485 2 155 1 579 1 062 604 428 52 642 Total 18 423 16 483 16 047 16 718 17 000 17 419 14 423 14 269 13 728 12 186 10 010 7 915 6 679 4 493 3 412 2 190 1 290 986 193 672 WC043: Mossel Bay 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC045: Oudtshoorn 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female 3 924 3 437 3 185 3 225 3 605 4 064 3 427 3 103 3 074 2 582 2 320 1 938 1 796 1 532 1 206 747 360 227 43 751 Male 3 653 3 307 3 179 3 355 3 727 4 061 3 325 3 226 3 163 2 789 2 506 2 334 2 107 1 819 1 336 835 542 416 45 679 Female 4 763 4 507 4 629 4 751 4 068 3 425 2 801 3 066 2 960 2 547 2 300 1 817 1 437 1 095 767 490 304 187 45 913 4 590 4 419 4 576 4 525 4 037 3 786 3 156 3 464 3 359 3 197 2 715 2 297 1 877 1 415 1 082 717 461 346 50 021 Total 7 577 6 743 6 363 6 580 7 332 8 125 6 752 6 330 6 237 5 371 4 826 4 272 3 903 3 350 2 542 1 582 902 643 89 430 Total 9 353 8 927 9 205 9 276 8 105 7 211 5 957 6 530 6 320 5 744 5 014 4 114 3 314 2 510 1 848 1 207 765 534 95 933 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa WC047: Bitou 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total WC051: Laingsburg 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 111 Male 2 394 1 937 1 806 1 876 2 088 2 489 2 394 2 188 1 748 1 458 1 135 850 678 516 458 244 110 98 24 468 Female 2 247 2 105 1 897 1 806 2 136 2 485 2 207 2 053 1 762 1 447 1 188 914 745 678 424 282 175 141 24 694 Male Female 407 358 352 326 295 335 310 297 304 257 249 193 163 120 74 45 30 18 4 134 398 349 332 341 276 294 293 333 320 276 243 222 166 117 78 55 31 32 4 155 Total 4 641 4 042 3 703 3 682 4 224 4 974 4 601 4 241 3 511 2 905 2 323 1 763 1 423 1 195 882 527 285 240 49 162 WC048: Knysna 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 3 363 2 717 2 498 2 494 2 897 3 307 2 946 2 653 2 453 1 853 1 585 1 320 1 162 998 859 441 235 174 33 957 Female 3 185 2 601 2 649 2 631 2 946 3 223 2 775 2 646 2 334 2 021 1 732 1 519 1 424 1 066 856 500 292 302 34 702 Total 6 548 5 319 5 147 5 125 5 844 6 530 5 721 5 299 4 787 3 874 3 318 2 838 2 585 2 064 1 714 941 527 477 68 659 Total WC052: Prince Albert 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male Female Total 806 707 684 667 571 629 603 630 624 533 492 414 329 238 152 99 61 50 8 289 652 601 653 597 573 481 469 430 428 458 331 251 192 161 112 63 24 20 6 496 656 699 625 544 558 524 421 425 460 417 347 275 228 149 140 84 53 35 6 640 1 308 1 299 1 278 1 141 1 131 1 005 890 855 888 875 678 527 420 310 252 147 77 55 13 136 Census 2011: Population Dynamics Report 03-01-67 Statistics South Africa WC053: Beaufort West 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total 112 Male 2 864 2 515 2 488 2 214 1 951 1 818 1 556 1 581 1 564 1 377 1 236 993 730 499 363 200 101 87 24 137 Female 2 701 2 509 2 524 2 137 2 020 1 890 1 691 1 706 1 710 1 493 1 405 1 114 865 591 475 304 165 148 25 449 Total 5 564 5 025 5 012 4 351 3 971 3 708 3 247 3 287 3 274 2 870 2 641 2 106 1 595 1 090 839 504 267 236 49 586 CPT: City of Cape Town 0-4 5-9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85+ Total Male 189 429 146 011 136 113 146 861 191 986 201 998 166 643 144 030 120 720 102 579 86 118 65 020 49 273 32 945 23 674 14 066 7 932 5 299 1 830 699 Female 180 867 143 416 132 493 154 508 193 503 198 700 160 021 141 591 126 701 116 666 98 817 77 929 60 544 42 198 32 464 22 364 14 862 11 683 1 909 327 Total 370 296 289 427 268 606 301 370 385 489 400 698 326 664 285 622 247 421 219 245 184 935 142 949 109 817 75 143 56 137 36 430 22 794 16 983 3 740 026 Census 2011: Population Dynamics Report 03-01-67
© Copyright 2026 Paperzz