Ecology of Marine Phytoplankton LECTURE NOTES WILL BE POSTED AT hVp://ocean.mit.edu/~mick/ENS-‐S06-‐2013 Mick Follows: [email protected] • Tuesday 5 Nov 2013 – Introduc@on to marine phytoplankton – Type II func@onal response: • Encounter-‐handling processes • Wednesday 6 Nov 2013 – Seasonal blooms – Cell size and equilibrium resource compe@@on • Thursday 7 Nov 2013 – Equilibrium: Top down control and co-‐existence – Resource supply ra@os and co-‐existence • Nitrogen fixers Surface ocean chlorophyll from space NASA MODIS The ocean’s physical structure and circula@on The ocean’s physical structure and circula@on Equator Pole Why do they live there? Dashed line indicates light at 1% of surface incident flux Figure: Anna Hickman in Williams and Follows (2011) Diverse types of phytoplankton Biogeography on Atlan@c Meridional Transect – pico-‐cyanobacteria -‐ Prochlorococcus -‐ diatoms -‐ coccolithophores Aiken et al (2000) -‐ Synechococcus Pico-‐cyanobacteria • Key traits: – Smallest photo-‐autotrophs • Smallest is Prochlorococcus <1μm radius – Small genome • ~1.7-‐9 Mbp • (c.f. 12-‐57 Mbp eukaryo@c phyto) – Dominate popula@on in low-‐ nutrient subtropical waters 0.1 micron Prochlorococcus: image C. Ting Prochlorococcus abundant in very low nutrient subtropical gyres Nitrate Prochlorococcus Synechococcus AMT 15 Phytoplankton: log(cells ml-‐1) Nitrate (micromoles kg-‐1) Johnson et al, Science (2006) Distribu@on of Prochlorococcus from a sta@s@cal model Flohman et al, PNAS (2013) AMT phytoplankton popula@on Data: Maranon et al (2000) Redrawn in Williams and Follows (2011) Compe@@on for nitrogen in the REVIEW ARTICLE Atlan@c tropical and subtropical a b 80° Nutrient amendments: Green dot = N limited 40° Shading – surface nitrate 0° -40° -80° 50° E 150° E 110° W 10° W t al, Nature Geo (indicate 2013) Figure 3 | PatternsMoore of nutrientelimitation. Backgrounds annual average surf assist comparison, nitrate is scaled by the mean N:P ratio of organic matter (that is, and secondary (outer circles) limiting nutrients as inferred from chlorophyll and/or p Compe@@on for inorganic nitrogen dP dt R = µo P − mP R + KR growth loss • P = phyto biomass • μo = max growth rate • R = external concentra@on of substrate • KR = half-‐satura@on • m = loss rate 1 R -‐-‐-‐-‐-‐-‐-‐-‐-‐ R+KR 0.5 KR R Equilibrium resource compe@@on: (K-‐strategists, gleaners) R 0 ~ µo P − mP R + KR Equilibrium mK R R* = µo − m • R* = subsistence concentra@on • Organism with lowest R* excludes others • Ambient concentra@on of R set to lowest R* • e.g. Stewart and Levin (1974) Example from laboratory: Compe@ng bacteria Hansen and Hubbell, Science, (1980) Low R* phenotype High R* phenotype Is an equilibrium view appropriate anywhere? Is equilibrium limit relevant in a dynamic ocean? GB4017 GB DUTKIEWICZ ET AL.: COUPLING OF ECOLOGY AND BIOGEOCHEMISTRY Figure 5. Single resource case: Ratio of difference to actual nutrient concentration (N ! R* )/(N ). (R -‐ R*minat)/R Contours are (!0.5, 0.5), green/yellow shading indicate R* close to ambient nutrient, red indicates 1 min 1 min nutrients exceed R*min, and blue indicates that nutrients are less than the R*min. No shading indicates where Simula@ons suggest seful limit n tropical and sline ubtropical waters found. Transect and circle indicate locations for no reasonable value for theudiagnosed R*min iwas Figures 3 and 4. Dutkiewicz et al (2009) down in the highly seasonal, subpolar oceans but may still be achieved during the summer period of the seasonal theory appears to hold is a subset of the domain whe strategy types dominate. Unshaded regions are thos How does R* scale with cell size? V = Vmax R R + KR (From yesterdays lecture) Vmax = A {ET } K H Area density of Handling Surface in rate (s-‐1) area of cell transporters cell wall (m-‐2) 2 2 α r (m ) KH KR = KE Handling rate (s-‐1) Encounter rate (s mol m-‐3)-‐1 How does R* scale with cell size? V = Vmax R R + KR Vmax 0.5 Vmax Vmax ~ r 2 If V controlled by molecular diffusion at low R V = 4π Dr(R∞ − Ro ) ≈ 4π DrR∞ KR R How does R* scale with cell size? V ≈ 4π DrR∞ KR defined as R∞ when V = 0.5 Vmax 0.5Vmax ≈ 4π DrK R 2 r 1/3 K R ~ ~ r ~ Vol r Cell size and compe@@on for fixed nitrogen • Litchman et al (2007) – Empirical evidence – KN ≈ 0.17 Vcell0.27 • Smallest cell, lowest KN – Lowest R* mK R R* = µo − m Prochlorococcus: smallest cells, smallest effec@ve KN, lowest R* (?) Nitrate Prochlorococcus Synechococcus AMT 15 Phytoplankton: log(cells ml-‐1) Nitrate (micromoles kg-‐1) Johnson et al, Science (2006) Gene@c and func@onal diversity of Prochlorococcus AMT 15 Johnson et al (2006) Prochlorococcus growth rate vs T and R* mK R R* = µo (T ) − m Johnson et al (2006) Gene@c and func@onal diversity of Prochlorococcus Many strains have lost ability to use nitrate Moore et al (2002) Prochlorococcus: smallest cells, lowest R* Nitrate Prochlorococcus Synechococcus AMT 15 Phytoplankton: log(cells ml-‐1) Nitrate (micromoles kg-‐1) Johnson et al, Science (2006) Why are larger cells not excluded? picophytoplankton (<2 μm) nanophytoplankton (2-‐20 μm) microphytoplankton (>20 μm) Size on AMT: Ward et al. J. Plankton Res. (2013) total chl a (mg chl m-‐3) total chl a (mg chl m-‐3)
© Copyright 2026 Paperzz