HOMEWORK 12 FOR MATH 2250 - MODEL SOLUTION Every problem will be worth two points. (1) Use finite approximation to estimate the area under the graph of f (x) = 4 − x2 between x = −2 and x = 2. (a) A lower sum with two rectangles of equal width. Approximation: 0 · 2 + 0 · 2 = 0. (b) A lower sum with four rectangles of equal width. Approximation: 0 · 1 + 3 · 1 + 3 · 1 + 0 · 1 = 6. Date: April 21, 2012. 1 2 HOMEWORK 12 FOR MATH 2250 - MODEL SOLUTION (c) An upper sum with two rectangles of equal width. Approximation: 4 · 2 + 4 · 2 = 16. (d) An upper sum with four rectangles of equal width. Approximation: 3 · 1 + 4 · 1 + 4 · 1 + 3 · 1 = 14. (2) Evaluate the following sums. 36 X (a) k. k=9 36 X k=9 k= 36 X k=1 k− 8 X k=1 k= 36(36 + 1) 8(8 + 1) − = 666 − 36 = 630. 2 2 HOMEWORK 12 FOR MATH 2250 - MODEL SOLUTION (b) 17 X 3 k2. k=3 17 X k 2 = k=3 17 X 2 k − k=1 2 X k2 = k=1 17(17 + 1)(2 · 17 + 1) 2(2 + 1)(2 · 2 + 1) − 6 6 = 1785 − 5 = 1780. (c) 71 X k(k − 1). k=18 71 X k(k − 1) = k=18 71 X 2 (k − k) = k=18 = 71 X 2 k − k=18 71 X k2 − 17 X 71 X − k=1 k=1 k k=18 ! k2 71 X k=1 k− 17 X ! k k=1 71(71 + 1)(2 · 71 + 1) 17(17 + 1)(2 · 17 + 1) 71(71 + 1) 17(17 + 1) − − + 6 6 2 2 = 121836 − 1785 − 2556 + 153 = 117648. = (3) Graph the integrands and use areas to evaluate the integral. Z 1 (1 − |x|)dx. −1 Z 1 (1 − |x|)dx = Area of = −1 1 · 2 · 1 = 1. 2 (4) Graph f (t) = t2 − t and find its average value over [−2, 1]. 4 HOMEWORK 12 FOR MATH 2250 - MODEL SOLUTION Z 1 Z 2 Z 1 2 Z 1 t − tdt = t dt − tdt −2 −2 −2 3 2 1 (−2)3 (−2)2 1 9 = − − − = . 3 3 2 2 2 Z 1 1 1 9 3 av(f ) = f (t)dt = · = . 1 − (−2) −2 3 2 2 f (t)dt = −2 1
© Copyright 2026 Paperzz