Name: ________________________ Class: ___________________ Date: __________ ID: A Test # 1 Review Short Answer 1. Find all intercepts: 10. Write an equation of the line that passes through the given point and is perpendicular to the given line. y 64x x 3 2. Find all intercepts: y (x 5 ) 4x 2 Point Line ÊÁ 1, 7 ˆ˜ Ë ¯ x6 11. Write an equation of the line that passes through the given point and is parallel to the given line. 3. Test for symmetry with respect to each axis and to the origin. x2 2 y x 4. Find the points of intersection of the graphs of the equations: Point Line ÊÁ 3, 4 ˆ˜ Ë ¯ 2x 5y 9 12. Find an equation of the line through the points of intersection of y x 2 and y 6x x 2 . x y2 3 13. Write an equation of the line that passes through the point ÊÁË 6,4 ˆ˜¯ and is perpendicular y x1 to the line x y 5. 5. Find the slope of the line passing through the points ÊÁ 1 8 ˆ˜ Ê ˆ ÁÁ , ˜˜ and ÁÁÁ 3 , 1 ˜˜˜ . ÁÁ 8 3 ˜˜ ÁÁ 16 24 ˜˜ Ë ¯ Ë ¯ 14. Evaluate (if possible) the function f(x) x 9 . Simplify the result. 6. Find the y-intercept of the line x 4y 8 . x 5 at 15. Let f (x ) 14x 8 . Then simplify the expression f(x) f(9) . x9 7. Find an equation of the line that passes through the point (7, 2) and has the slope m that is undefined. 16. Find the domain and range of the function g(t) t 10 . 8. Find an equation of the line that passes through the points (18, 7) and (18, 23). 17. Find the domain and range of the function 11 h(x) . x6 9. Use the result, “the line with intercepts x y ÁÊ a,0 ˜ˆ and ÁÊ 0,b ˜ˆ has the equation 1, Ë ¯ Ë ¯ a b a 0, b 0”, to write an equation of the line with x-intercept: ÊÁË 8,0ˆ˜¯ and y-intercept: ÊÁË 0,7ˆ˜¯ . 18. Determine whether y is a function of x. y 5x 2 6 1 Name: ________________________ 19. Given f(x) cos x and g(x) ID: A 2 21. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares. x , evaluate f(g(2)) . 20. Determine whether the function is even, odd, or neither. f(x) x 2 (3 x) 2 22. Complete the table and use the result to estimate the limit. lim x3 x3 x 16x 39 2 x f(x) 2.9 2.99 2.999 3.001 2 3.01 3.1 Name: ________________________ ID: A 28. Let f(x) 3 2x 2 and g (x ) limit. 23. Determine the following limit. (Hint: Use the graph to calculate the limit.) Ê ˆ lim ÁÁÁÁ x 2 4 ˜˜˜˜ ¯ x1Ë x 3 . Find the lim g ÊÁË f (x ) ˆ˜¯ x2 29. Find the lmit. ÊÁ x ˆ˜ lim tan ÁÁÁ ˜˜˜˜ ÁË 3 ¯ x 30. Find the limit. lim cos x2 x 3 31. Suppose that lim f (x ) 11 and lim g (x ) 3. xc xc Find the following limit. 24. Find the limit. È ˘ lim ÍÍÍÎ f (x ) g (x ) ˙˙˙˚ xc lim 9x 2 36x x 4 32. Suppose that lim f (x ) 15 and lim g (x ) 10. xc 25. Find the limit. Find the following limit. lim x6 x x 8 lim 2 xc ÍÈÍ f (x )g (x ) ˙˘˙ ÍÎ ˙˚ 26. Find the limit. 33. Find the limit (if it exists). lim x4 x5 x1 lim x 8 27. Let f (x ) 4x 2 and g (x ) x 3 . Find the limit. x8 x 2 64 34. Find the limit (if it exists). lim g ÊÁË f (x ) ˆ˜¯ x1 lim x5 3 x4 3 x5 xc Name: ________________________ ID: A 35. Determine the limit (if it exists). lim 39. Find the limit (if it exists). 12(1 cos x) x x0 lim 2 x 11 x0 sin 4 x x3 37. Find lim x 0 lim x 36 f (x x ) f (x ) where f (x ) 4x 3 . x x3 È ˘ lim ÊÁÁ 3 ÍÍÍÎ x ˙˙˙˚ 8 ˆ˜˜ Ë ¯ x 6 È ˘ 42. Find the limit (if it exists). Note that f(x) ÍÍÍÎ x ˙˙˙˚ represents the greatest integer function. (ii) lim f(x) (iii) lim f(x) x3 x 6 x 36 È ˘ 41. Find the limit (if it exists). Note that f(x) ÍÍÍÎ x ˙˙˚˙ represents the greatest integer function. 38. Use the graph as shown to determine the following limits, and discuss the continuity of the function at x 3. (i) lim f(x) 11 x x 2 121 40. Find the limit (if it exists). 36. Determine the limit (if it exists). lim x3 È ˘ lim ÊÁÁ 2x ÍÍÍÎ x ˙˙˙˚ ˆ˜˜ ¯ Ë x5 43. Find the x-values (if any) at which the function f (x ) 13x 2 15x 15 is not continuous. Which of the discontinuities are removable? 44. Find the x-values (if any) at which f (x ) x 3 is not continuous. x3 4 Name: ________________________ ID: A 45. Find the constant a such that the function ÏÔ ÔÔ 6, ÔÔ f (x ) ÌÔ ax b, ÔÔ ÔÔ 6, Ó x 5 5 x 1 x1 is continuous on the entire real line. 46. Find all the vertical asymptotes (if any) of the 5 . graph of the function f (x ) 2 (x 3 ) 47. Find all the vertical asymptotes (if any) of the graph of the function f(x) 48. x3 8 . x2 Find the limit. ÊÁ 1 ˆ˜ lim ÁÁÁÁ x 2 ˜˜˜˜ x¯ x 0 Ë 49. Use a graphing utility to graph the function f (x ) limit x 2 2x 4 x3 8 lim f (x ) . x 2 and determine the one-sided 5 ID: A Test # 1 Review Answer Section SHORT ANSWER 1. ANS: x-intercepts: (0, 0), (–8, 0), (8, 0); y-intercept: (0, 0) PTS: 1 DIF: Easy REF: 0.1.22 MSC: Skill NOT: Section 0.1 2. ANS: x-intercepts: (–5, 0), (–2, 0), (2, 0); y-intercept: (0, 10) OBJ: Calculate the intercepts of an equation PTS: 1 DIF: Easy MSC: Skill NOT: Section 0.1 3. ANS: symmetric with respect to the origin OBJ: Calculate the intercepts of an equation REF: 0.1.24 PTS: 1 DIF: Easy REF: 0.1.37 OBJ: Identify the type of symmetry of the graph of an equation MSC: Skill NOT: Section 0.1 4. ANS: ÊÁ 2, 1 ˆ˜ , ÊÁ 1, 2 ˆ˜ Ë ¯ Ë ¯ PTS: 1 DIF: Medium REF: 0.1.66 OBJ: Calculate the points of intersection of the graphs of equations MSC: Skill NOT: Section 0.1 5. ANS: 42 PTS: 1 DIF: Medium REF: 0.2.13 OBJ: Calculate the slope of a line passing through two points NOT: Section 0.2 6. ANS: (0, 2) PTS: 1 DIF: Medium REF: 0.2.25 OBJ: Manipulate a linear equation to determine its y-intercept NOT: Section 0.2 7. ANS: x7 MSC: Skill MSC: Skill PTS: 1 DIF: Easy REF: 0.2.30 OBJ: Write an equation of a line given a point on the line and its slope MSC: Skill NOT: Section 0.2 1 ID: A 8. ANS: 5 y x8 6 PTS: 1 DIF: Easy REF: 0.2.40 OBJ: Write an equation of a line given two points on the line NOT: Section 0.2 9. ANS: 7x 8y 56 0 PTS: 1 DIF: Easy REF: 0.2.47 OBJ: Write an equation of a line given its x- and y-intercepts NOT: Section 0.2 10. ANS: y 1 MSC: Skill MSC: Skill PTS: 1 DIF: Medium REF: 0.2.61 OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular MSC: Skill NOT: Section 0.2 11. ANS: 2x 5y 14 PTS: 1 DIF: Medium REF: 0.2.63 OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular MSC: Skill NOT: Section 0.2 12. ANS: y 3x PTS: 1 DIF: Medium REF: 0.2.71 OBJ: Write an equation of a line through the points of intersection of quadratic equations MSC: Skill NOT: Section 0.2 13. ANS: x y 10 0 PTS: 1 DIF: Medium REF: 0.2.64b OBJ: Write an equation of a line given a point on the line and a line to which it is perpendicular MSC: Skill NOT: Section 0.2 14. ANS: 2 PTS: 1 MSC: Skill 15. ANS: 14 DIF: Easy NOT: Section 0.3 REF: 0.3.4a OBJ: Evaluate a function and simplify PTS: 1 MSC: Skill DIF: Medium NOT: Section 0.3 REF: 0.3.10 OBJ: Simplify a difference quotient 2 ID: A 16. ANS: none of the above PTS: 1 DIF: Easy REF: 0.3.16 OBJ: Identify the domain and range of a function NOT: Section 0.3 17. ANS: domain: (, 6) (6, ) range: (, 0) (0, ) PTS: 1 DIF: Easy REF: 0.3.20 OBJ: Identify the domain and range of a function NOT: Section 0.3 18. ANS: yes MSC: Skill MSC: Skill PTS: 1 MSC: Skill 19. ANS: 1 DIF: Easy NOT: Section 0.3 REF: 0.3.46 OBJ: Identify equations that are functions PTS: 1 MSC: Skill 20. ANS: neither DIF: Easy NOT: Section 0.3 REF: 0.3.60a OBJ: Evaluate composite functions PTS: 1 DIF: Easy REF: 0.3.69 OBJ: Identify the type of symmetry of the graph of a function NOT: Section 0.3 21. ANS: V x(22 2x) 2 MSC: Skill PTS: 1 MSC: Application 22. ANS: –0.100000 DIF: Medium NOT: Section 0.3 REF: 0.3.97a OBJ: Create functions in applications PTS: 1 MSC: Skill 23. ANS: 5 DIF: Medium NOT: Section 1.2 REF: 1.2.1 OBJ: Estimate a limit from a table of values PTS: 1 DIF: Medium REF: 1.2.16 OBJ: Estimate the limit of a function from its graph NOT: Section 1.2 3 MSC: Skill ID: A 24. ANS: 0 PTS: 1 MSC: Skill 25. ANS: 3 22 DIF: Easy NOT: Section 1.3 REF: 1.3.9 OBJ: Evaluate a limit using properties of limits PTS: 1 MSC: Skill 26. ANS: 1 DIF: Easy NOT: Section 1.3 REF: 1.3.19 OBJ: Evaluate a limit using properties of limits PTS: 1 MSC: Skill 27. ANS: 8 DIF: Medium NOT: Section 1.3 REF: 1.3.22 OBJ: Evaluate a limit using properties of limits PTS: 1 MSC: Skill 28. ANS: 14 DIF: Medium NOT: Section 1.3 REF: 1.3.24c OBJ: Evaluate the limit of composite functions PTS: 1 MSC: Skill 29. ANS: 3 DIF: Medium NOT: Section 1.3 REF: 1.3.25c OBJ: Evaluate the limit of composite functions PTS: 1 MSC: Skill 30. ANS: 1 2 DIF: Medium NOT: Section 1.3 REF: 1.3.28 OBJ: Evaluate the limit of the function PTS: 1 MSC: Skill 31. ANS: –8 DIF: Easy NOT: Section 1.3 REF: 1.3.29 OBJ: Evaluate a limit using properties of limits PTS: 1 DIF: Medium REF: 1.3.37b OBJ: Evaluate the limit of a function using properties of limits NOT: Section 1.3 32. ANS: 150 PTS: 1 DIF: Medium REF: 1.3.37c OBJ: Evaluate the limit of a function using properties of limits NOT: Section 1.3 4 MSC: Skill MSC: Skill ID: A 33. ANS: 1 16 PTS: 1 DIF: Medium REF: 1.3.51 OBJ: Evaluate the limit of a function analytically NOT: Section 1.3 34. ANS: 1 6 PTS: 1 DIF: Medium REF: 1.3.55 OBJ: Evaluate the limit of a function analytically NOT: Section 1.3 35. ANS: 6 PTS: 1 DIF: Medium REF: 1.3.66 OBJ: Evaluate the limit of a function analytically NOT: Section 1.3 36. ANS: 0 PTS: 1 DIF: Medium REF: 1.3.69 OBJ: Evaluate the limit of a function analytically NOT: Section 1.3 37. ANS: 4 PTS: OBJ: NOT: 38. ANS: 1 ,1 ,1 1 DIF: Medium REF: 1.3.85 Evaluate the limit of a difference quotient Section 1.3 MSC: Skill MSC: Skill MSC: Skill MSC: Skill MSC: Skill , not continuous PTS: 1 DIF: Medium REF: 1.4.3a OBJ: Estimate a limit and points of discontinuity from a graph NOT: Section 1.4 39. ANS: 1 22 PTS: 1 MSC: Skill DIF: Easy NOT: Section 1.4 REF: 1.4.10 5 MSC: Skill OBJ: Evaluate one-sided limits ID: A 40. ANS: 1 12 PTS: 1 MSC: Skill 41. ANS: 13 DIF: Medium NOT: Section 1.4 REF: 1.4.12 OBJ: Evaluate one-sided limits PTS: 1 MSC: Skill 42. ANS: 5 DIF: Medium NOT: Section 1.4 REF: 1.4.23 OBJ: Evaluate one-sided limits PTS: 1 DIF: Medium MSC: Skill NOT: Section 1.4 43. ANS: continuous everywhere REF: 1.4.24 OBJ: Evaluate one-sided limits PTS: 1 DIF: Medium REF: 1.4.38 OBJ: Identify the removable discontinuities of a function MSC: Skill NOT: Section 1.4 44. ANS: f (x ) is not continuous at x 3 and the discontinuity is nonremovable. PTS: 1 DIF: Medium REF: 1.4.49 OBJ: Identify the removable discontinuities of a function NOT: Section 1.4 45. ANS: a 2 , b 4 MSC: Skill PTS: 1 DIF: Medium REF: 1.4.67 OBJ: Identify the value of a parameter to ensure a function is continuous MSC: Skill NOT: Section 1.4 46. ANS: x3 PTS: 1 DIF: Easy REF: 1.5.14 OBJ: Identify the vertical asymptotes (if any) of the graph of a function MSC: Skill NOT: Section 1.5 47. ANS: no vertical asymptotes PTS: 1 DIF: Medium REF: 1.5.25 OBJ: Identify the vertical asymptotes (if any) of the graph of a function MSC: Skill NOT: Section 1.5 6 ID: A 48. ANS: PTS: 1 MSC: Skill 49. ANS: DIF: Medium NOT: Section 1.5 REF: 1.5.48 OBJ: Evaluate one-sided limits PTS: 1 MSC: Skill DIF: Medium NOT: Section 1.5 REF: 1.5.55 OBJ: Estimate one-sided limits from a graph 7
© Copyright 2026 Paperzz