Kinetic Theory: pressure q Model: gas molecules with mass m enclosed in a cube LxLxL q Momentum of a molecule moving in x direction: q “pressure” in x direction produced by one molecule Fx mv 2x mv2x px = 2 = 3 = L L V Px = mvx q For N molecules q Momentum change on recoil: DPx = Px 2 - Px1 = q For random motion we have = m(-v x ) - mv x = 2m1v x 1 v x2 = v y2 = v z2 = v 2 3 q Force produced on the wall: † N 2 2 mvx = nmvx V px = q Total pressure dPx DPx 2mx v x mv x = = = dt Dt 2L /v x L † Dt = time between consecutive 1 2 p = nmv 2 = n E k = nkT 3 3 3 E k = kT 2 Fx = wall collisions † † † Kinetic Theory: velocity distribution q fraction of molecules with velocity between vx and vx+dvx dn = f (v x ) dv x = Ae n vx = Ae - mv x2 2kT E - kx kT q Obtain Maxwell distribution 3 dv x = q From here we calculate mv 2 m - 2kTx dv x = e dv x 2pkT † ß Average velocity • v= constant A is determined by normalization † † dv x dv y dv z = 4 pv 2 dv 8kT pm ß Root mean square velocity • v2 = † Úv 2 f (v)4 pv 2 dv = 0 3kT m ß Most probable velocity q Rewrite in spherical coordinates † 2 Ú vf (v)4pv dv = 0 q Total distribution dn = f (v x ) f (v y ) f (v z ) dv x dv y dv z = n v = f (v)dv x dv y dv z 2 mv 4 Ê m ˆ 2 2 - 2kT f (v ) = v e Á ˜ p Ë 2kT ¯ df (v ) 2kT = dv m † † 1 Maxwellian velocity distribution Maxwell: T dependence 2 Maxwell: mass dependence Kinetic Theory: impingement rate q Model: infinite plane perpendicular to x direction q Need only x component of f(v) q Engineering formulas (note units) ß For molecules with molecular mass M; pressure in torr mv 2 F = 3.5.10 22 m - 2kTx f (v x ) = e 2pkT ß for air (M=29 g) at room temperature; pressure in torr q Number of molecules striking a surface / cm2s † † • m F = Ú v x dn x = n 2pkT ° F= • Úv e x - † mv x2 2kT p È molecules˘ Í ˙ MT Î cm 2 s ˚ dv x È molecules˘ F = 3.8.10 20 pÍ Î cm 2 s ˙˚ ° 1 1 8kT p nv = n = † 4 4 pm 2pmkT † 3 Kinetic Theory: mean free path q volume swept by a moving molecule with diameter d in time Dt DV = pd 2vDt l= q for molecular density n † pd 2vDt = l = vDt = † † 1 n q mean free path 1 pd 2 n 5.10-3 [cm] p q Other properties of interest ß viscosity † q taking into account movement of molecules and Maxwell † distribution 1 1 l= 2 pd 2 n q Engineering formula for air at room temperature: p in torr † È Ns ˘ 1 1 h = nmvl = r vl Í 2 = 10 p˙ Îm ˚ 3 3 1 h = nmvl more rigorous result 2 ß diffusion coefficient 1 h D = vl = [cm 2 /s] 3 r h more rigorous result D = 1.34 r † † † 4
© Copyright 2026 Paperzz